Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Neoplasia ; 55: 101020, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991376

RESUMO

The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico , Proteínas Proto-Oncogênicas c-myc , Humanos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Regulação para Cima/efeitos dos fármacos
2.
Front Oncol ; 14: 1394653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933441

RESUMO

Novel therapeutic approaches are needed for the treatment of Ewing sarcoma tumors. We previously identified that Ewing sarcoma cell lines are sensitive to drugs that inhibit protein translation. However, translational and therapeutic approaches to inhibit protein synthesis in tumors are limited. In this work, we identified that reactive oxygen species, which are generated by a wide range of chemotherapy and other drugs, inhibit protein synthesis and reduce the level of critical proteins that support tumorigenesis in Ewing sarcoma cells. In particular, we identified that both hydrogen peroxide and auranofin, an inhibitor of thioredoxin reductase and regulator of oxidative stress and reactive oxygen species, activate the repressor of protein translation 4E-BP1 and reduce the levels of the oncogenic proteins RRM2 and PLK1 in Ewing and other sarcoma cell lines. These results provide novel insight into the mechanism of how ROS-inducing drugs target cancer cells via inhibition of protein translation and identify a mechanistic link between ROS and the DNA replication (RRM2) and cell cycle regulatory (PLK1) pathways.

3.
Exp Eye Res ; 244: 109927, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750784

RESUMO

Subconjunctival fibrosis is the major cause of failure in both conventional and modern minimally invasive glaucoma surgeries (MIGSs) with subconjunctival filtration. The search for safe and effective anti-fibrotic agents is critical for improving long-term surgical outcomes. In this study, we investigated the effect of inhibiting the rapamycin-insensitive mTORC1/4E-BP1 axis on the transforming growth factor-beta 1(TGF-ß1)-induced fibrotic responses in human Tenon's fibroblasts (HTFs), as well as in a rat model of glaucoma filtration surgery (GFS). Primary cultured HTFs were treated with 3 ng/mL TGF-ß1 for 24 h, followed by treatment with 10 µM CZ415 for additional 24 h. Rapamycin (10 µM) was utilized as a control for mTORC1/4E-BP1 signaling insensitivity. The expression levels of fibrosis-associated molecules were measured using quantitative real-time PCR, Western blotting, and immunofluorescence analysis. Cell migration was assessed through the scratch wound assay. Additionally, a rat model of GFS was employed to evaluate the anti-fibrotic effect of CZ415 in vivo. Our findings indicated that both rapamycin and CZ415 treatment significantly reduced the TGF-ß1-induced cell proliferation, migration, and the expression of pro-fibrotic factors in HTFs. CZ415 also more effectively inhibited TGF-ß1-mediated collagen synthesis in HTFs compared to rapamycin. Activation of mTORC1/4E-BP signaling following TGF-ß1 exposure was highly suppressed by CZ415 but was only modestly inhibited by rapamycin. Furthermore, CZ415 was found to decrease subconjunctival collagen deposition in rats post GFS. Our results suggest that rapamycin-insensitive mTORC1/4E-BP1 signaling plays a critical role in TGF-ß1-driven collagen synthesis in HTFs. This study demonstrated that inhibition of the mTORC1/4E-BP1 axis offers superior anti-fibrotic efficacy compared to rapamycin and represents a promising target for improving the success rate of both traditional and modern GFSs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fibroblastos , Fibrose , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo , Cápsula de Tenon , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Humanos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Sirolimo/farmacologia , Fibrose/metabolismo , Cápsula de Tenon/metabolismo , Cápsula de Tenon/efeitos dos fármacos , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Western Blotting , Ratos Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais , Reação em Cadeia da Polimerase em Tempo Real , Masculino , Glaucoma/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Imunossupressores/farmacologia
4.
BMC Cancer ; 24(1): 582, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741069

RESUMO

BACKGROUND: Local recurrence after surgery and radiochemotherapy seriously affects the prognosis of locally advanced rectal cancer (LARC) patients. Studies on molecular markers related to the radiochemotherapy sensitivity of cancers have been widely carried out, which might provide valued information for clinicians to carry out individual treatment. AIM: To find potential biomarkers of tumors for predicting postoperative recurrence. METHODS: In this study, LARC patients undergoing surgery and concurrent radiochemotherapy were enrolled. We focused on clinicopathological factors and PTEN, SIRT1, p-4E-BP1, and pS6 protein expression assessed by immunohistochemistry in 73 rectal cancer patients with local recurrence and 76 patients without local recurrence. RESULTS: The expression of PTEN was higher, while the expression of p-4E-BP1 was lower in patients without local recurrence than in patients with local recurrence. Moreover, TNM stage, lymphatic vessel invasion (LVI), PTEN and p-4E-BP1 might be independent risk factors for local recurrence after LARC surgery combined with concurrent radiochemotherapy. CONCLUSIONS: This study suggests that PTEN and p-4E-BP1 might be potential biomarkers for prognostic prediction and therapeutic targets for LARC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Biomarcadores Tumorais , Proteínas de Ciclo Celular , Quimiorradioterapia , Recidiva Local de Neoplasia , PTEN Fosfo-Hidrolase , Neoplasias Retais , Humanos , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Neoplasias Retais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Quimiorradioterapia/métodos , Biomarcadores Tumorais/metabolismo , Idoso , Prognóstico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Adulto , Estadiamento de Neoplasias
5.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474373

RESUMO

The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.


Assuntos
Glioblastoma , Células-Tronco Neoplásicas , Sirolimo , Humanos , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Neoplásicas/metabolismo
6.
Neurooncol Adv ; 6(1): vdae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476930

RESUMO

Background: NF2-associated meningiomas are progressive, highly morbid, and nonresponsive to chemotherapies, highlighting the need for improved treatments. We have established aberrant activation of the mechanistic target of rapamycin (mTOR) signaling in NF2-deficient tumors, leading to clinical trials with first- and second-generation mTOR inhibitors. However, results have been mixed, showing stabilized tumor growth without shrinkage offset by adverse side effects. To address these limitations, here we explored the potential of third-generation, bi-steric mTOR complex 1 (mTORC1) inhibitors using the preclinical tool compound RMC-6272. Methods: Employing human NF2-deficient meningioma lines, we compared mTOR inhibitors rapamycin (first-generation), INK128 (second-generation), and RMC-6272 (third-generation) using in vitro dose-response testing, cell-cycle analysis, and immunoblotting. Furthermore, the efficacy of RMC-6272 was assessed in NF2-null 3D-spheroid meningioma models, and its in vivo potential was evaluated in 2 orthotopic meningioma mouse models. Results: Treatment of meningioma cells revealed that, unlike rapamycin, RMC-6272 demonstrated superior growth inhibitory effects, cell-cycle arrest, and complete inhibition of phosphorylated 4E-BP1 (mTORC1 readout). Moreover, RMC-6272 had a longer retention time than INK128 and inhibited the expression of several eIF4E-sensitive targets on the protein level. RMC-6272 treatment of NF2 spheroids showed significant shrinkage in size as well as reduced proliferation. Furthermore, in vivo studies in mice revealed effective blockage of meningioma growth by RMC-6272, compared with vehicle controls. Conclusions: Our study in preclinical models of NF2 supports possible future clinical evaluation of third-generation, investigational mTORC1 inhibitors, such as RMC-5552, as a potential treatment strategy for NF2.

7.
Nutrients ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004105

RESUMO

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Assuntos
Glutamina , Condicionamento Físico Animal , Ratos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Nutricionais , Glutamatos/farmacologia , Condicionamento Físico Animal/fisiologia
8.
Iran J Allergy Asthma Immunol ; 22(2): 190-199, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37496412

RESUMO

The pathogenesis of idiopathic pulmonary fibrosis (IPF) is quite similar to that of cancer pathogenesis, and several pathways appear to be involved in both disorders. The mammalian target of the rapamycin (mTOR) pathway harbors several established oncogenes and tumor suppressors. The same signaling molecules and growth factors, such as vascular endothelial growth factor (VEGF), contributing to cancer development and progression play a part in fibroblast proliferation, myofibroblast differentiation, and the production of extracellular matrix in IPF development as well. The expression of candidate genes acting upstream and downstream of mTORC1, as well as Vegf and low-density lipoprotein receptor related protein 1(Lrp1), was assessed using specific primers and quantitative polymerase chain reaction (qPCR) within the lung tissues of bleomycin (BLM)-induced IPF mouse models. Lung fibrosis was evaluated by histological examinations and hydroxyproline colorimetric assay. BLM-exposed mice developed lung injuries characterized by inflammatory manifestations and fibrotic features, along with higher levels of collagen and hydroxyproline. Gene expression analyses indicated a significant elevation of regulatory associated protein of mTOR (Raptor), Ras homolog enriched in brain (Rheb), S6 kinase 1, and Eukaryotic translation initiation factor 4E-binding protein 1 (4Ebp1), as well as a significant reduction of Vegfa, Tuberous sclerosis complex (Tsc2), and Lrp1; no changes were observed in the Tsc1 mRNA level. Our findings support the elevation of S6K1 and 4EBP1 in response to the TSC/RHEB/mTORC1 axis, which profoundly encourages the development and establishment of IPF and cancer. In addition, this study suggests a possible preventive role for VEGF-A and LRP1 in the development of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hidroxiprolina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Transporte , Fatores de Transcrição , Fibrose Pulmonar Idiopática/genética , Fibrose , Mamíferos/metabolismo
9.
Cell Rep ; 42(7): 112764, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405918

RESUMO

Increased PD-L1 expression in cancer cells is known to enhance immunosuppression, but the mechanism underlying PD-L1 upregulation is incompletely characterized. We show that PD-L1 expression is upregulated through internal ribosomal entry site (IRES)-mediated translation upon mTORC1 inhibition. We identify an IRES element in the PD-L1 5'-UTR that permits cap-independent translation and promotes continuous production of PD-L1 protein despite effective inhibition of mTORC1. eIF4A is found to be a key PD-L1 IRES-binding protein that enhances PD-L1 IRES activity and protein production in tumor cells treated with mTOR kinase inhibitors (mTORkis). Notably, treatment with mTORkis in vivo elevates PD-L1 levels and reduces the number of tumor-infiltrating lymphocytes in immunogenic tumors, but anti-PD-L1 immunotherapy restores antitumor immunity and enhances the therapeutic efficacy of mTORkis. These findings report a molecular mechanism for regulating PD-L1 expression through bypassing mTORC1-mediated cap-dependent translation and provide a rationale for targeting PD-L1 immune checkpoint to improve mTOR-targeted therapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Inibidores de MTOR , Alvo Mecanístico do Complexo 1 de Rapamicina , Linhagem Celular Tumoral
10.
Mol Biol Rep ; 50(7): 5807-5816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37219665

RESUMO

BACKGROUND: Eukaryotic initiation factor 5A hypusine (eIF5AHyp) stimulates the translation of proline repeat motifs. Salt inducible kinase 2 (SIK2) containing a proline repeat motif is overexpressed in ovarian cancers, in which it promotes cell proliferation, migration, and invasion. METHODS AND RESULTS: Western blotting and dual luciferase analyses showed that depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA downregulated SIK2 level and decreased luciferase activity in cells transfected with a luciferase-based reporter construct containing consecutive proline residues, whereas the activity of the mutant control reporter construct (replacing P825L, P828H, and P831Q) did not change. According to the MTT assay, GC7, which has a potential antiproliferative effect, reduced the viability of several ovarian cancer cell lines by 20-35% at high concentrations (ES2 > CAOV-3 > OVCAR-3 > TOV-112D) but not at low concentrations. In a pull-down assay, we identified eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP1 (p4E-BP1) phosphorylated at Ser 65 as downstream binding partners of SIK2, and we validated that the level of p4E-BP1(Ser 65) was downregulated by SIK2-targeting siRNA. Conversely, in ES2 cells overexpressing SIK2, the p4E-BP1(Ser 65) level was increased but decreased in the presence of GC7 or eIF5A-targeting siRNA. Finally, the migration, clonogenicity, and viability of ES2 ovarian cancer cells were reduced by GC7 treatment as well as by siRNA for eIF5A gene silencing and siRNA for SIK2 and 4E-BP1 gene silencing. Conversely, those activities were increased in cells overexpressing SIK2 or 4E-BP1 and decreased again in the presence of GC7. CONCLUSION: The depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA attenuated activation of the SIK2-p4EBP1 pathway. In that way, eIF5AHyp depletion reduces the migration, clonogenicity, and viability of ES2 ovarian cancer cells.


Assuntos
Apoptose , Neoplasias Ovarianas , Feminino , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Ovarianas/genética , Fatores de Iniciação de Peptídeos/genética , RNA Interferente Pequeno/genética , Fator de Iniciação de Tradução Eucariótico 5A
11.
Protein Cell ; 14(3): 202-216, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36929036

RESUMO

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Senescência Celular , Complexo III da Cadeia de Transporte de Elétrons , Células-Tronco Mesenquimais , Mitocôndrias , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Homeostase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mitocôndrias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Células Cultivadas
13.
Virus Res ; 322: 198947, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181978

RESUMO

Aquaporin 3(AQP3) is involved in epithelial-mesenchymal transformation of tumor cells and is closely related to the occurrence and development of tumors. However, the regulatory mechanism and function of AQP3 in EBV-associated gastric cancer (EBVaGC) are still poorly understood. This study aims to explore the regulatory effect of EBV on AQP3 and the cross talk of AQP3 with EIF4E-binding proteins 1(4E-BP1) in EBVaGC. The effect of LMP2A on the expression of AQP3 and 4E-BP1 was analyzed using real-time PCR and western blotting. The biological functions of AQP3 and 4E-BP1 in gastric cancer cells were detected by cell biological experiments. In addition, we examined the role of mTOR and ERK signaling pathways in the LMP2A/AQP3/4E-BP1 regulatory axis. We found that LMP2A could down-regulate AQP3 expression by inhibiting the activation of mTOR signaling pathway, and further promote autophagy and migration of gastric cancer cells. AQP3 up-regulated the expression of 4E-BP1 and its phosphorylated protein by activating ERK signaling pathway, thus promoting the autophagy and proliferation of gastric cancer cells. In conclusion, EBV-encoded LMP2A inhibits AQP3 expression, and further participates in cell proliferation, migration and autophagy through the mTOR/AQP3/ERK/4E-BP1 axis.


Assuntos
Herpesvirus Humano 4 , Neoplasias Gástricas , Humanos , Aquaporina 3/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Med Sci (Basel) ; 10(3)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36135836

RESUMO

The polyamines putrescine, spermidine and spermine are nutrient-like polycationic molecules involved in metabolic processes and signaling pathways linked to cell growth and cancer. One important pathway is the PI3K/Akt pathway where studies have shown that polyamines mediate downstream growth effects. Downstream of PI3K/Akt is the mTOR signaling pathway, a nutrient-sensing pathway that regulate translation initiation through 4EBP1 and p70S6K phosphorylation and, along with the PI3K/Akt, is frequently dysregulated in breast cancer. In this study, we investigated the effect of intracellular polyamine modulation on mTORC1 downstream protein and general translation state in two breast cancer cell lines, MCF-7 and MDA-MB-231. The effect of mTORC1 pathway inhibition on the growth and intracellular polyamines was also measured. Results showed that polyamine modulation alters 4EBP1 and p70S6K phosphorylation and translation initiation in the breast cancer cells. mTOR siRNA gene knockdown also inhibited cell growth and decreased putrescine and spermidine content. Co-treatment of inhibitors of polyamine biosynthesis and mTORC1 pathway induced greater cytotoxicity and translation inhibition in the breast cancer cells. Taken together, these data suggest that polyamines promote cell growth in part through interaction with mTOR pathway. Similarly intracellular polyamine content appears to be linked to mTOR pathway regulation. Finally, dual inhibition of polyamine and mTOR pathways may provide therapeutic benefits in some breast cancers.


Assuntos
Neoplasias da Mama , Poliaminas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatidilinositol 3-Quinases , Poliaminas/metabolismo , Poliaminas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Putrescina/metabolismo , Putrescina/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Espermidina/metabolismo , Espermidina/farmacologia , Espermidina/uso terapêutico , Espermina/metabolismo , Espermina/farmacologia , Espermina/uso terapêutico , Serina-Treonina Quinases TOR/uso terapêutico
15.
J Clin Exp Hepatol ; 12(2): 510-518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535114

RESUMO

Background and aims: The pathophysiology of sarcopenia in cirrhosis is poorly understood. We aimed to evaluate the histological alterations in the muscle tissue of patients with cirrhosis and sarcopenia, and identify the regulators of muscle homeostasis. Methods: Computed tomography images at third lumbar vertebral level were used to assess skeletal muscle index (SMI) in 180 patients. Sarcopenia was diagnosed based on the SMI cut-offs from a population of similar ethnicity. Muscle biopsy was obtained from the vastus lateralis in 10 sarcopenic patients with cirrhosis, and the external oblique in five controls (voluntary kidney donors during nephrectomy). Histological changes were assessed by hematoxylin and eosin staining and immunohistochemistry for phospho-FOXO3, phospho-AKT, phospho-mTOR, and apoptosis markers (annexin V and caspase 3). The messenger ribonucleic acid (mRNA) expressions for MSTN, FoxO3, markers of ubiquitin-proteasome pathway (FBXO32, TRIM63), and markers of autophagy (Beclin-1 and LC3) were also quantified. Results: The prevalence of sarcopenia was 14.4%. Muscle histology in sarcopenics showed atrophic angulated fibers (P = 0.002) compared to controls. Immunohistochemistry showed a significant loss of expression of phospho-mTOR (P = 0.026) and an unaltered phospho-AKT (P = 0.089) in sarcopenic patients. There were no differences in the immunostaining for annexin-V, caspase-3, and phospho-FoxO3 between the two groups. The mRNA expressions of MSTN and Beclin-1 were higher in sarcopenics (P = 0.04 and P = 0.04, respectively). The two groups did not differ in the mRNA levels for TRIM63, FBXO32, and LC3. Conclusions: Significant muscle atrophy, increase in autophagy, MSTN gene expression, and an impaired mTOR signaling were seen in patients with sarcopenia and cirrhosis.

16.
J Clin Lab Anal ; 36(4): e24332, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35257419

RESUMO

BACKGROUND: Although the phosphorylation of 4E-BP1 that has been detected in high-grade prostate cancer has been reported in previous studies, overexpression of p4E-BP1 and 4EBP1 and their clinical significance in prostate cancer still remain unknown. METHODS: One hundred six samples of prostate tissues were collected and analyzed by immunohistochemistry with p4E-BP1 or 4E-BP1 specific antibodies. Everolimus was used to block the phosphorylation of p4E-BP1, and then flow cytometry, clone formation, transwell, and wound healing assays were performed to detect the survival and invasive ability of the prostate cancer cells. RESULTS: We found that the expression of 4E-BP1 and p4E-BP1 was higher in prostate cancer tissues than in normal tissues. Interestingly, the expression of p4E-BP1 was significantly associated with Gleason score and lymph node metastasis, but had no obvious correlation with PSA and the presence of bone or visceral metastasis. However, no evident correlation was found between the positive expression of 4E-BP1 and these clinical characteristics. In in vitro experiments, we found similar results as the clinical presentation that 4E-BP1 and p4E-BP1 were low expressed in normal prostate epithelial cells, but in prostate cancer cells, as the malignancy increasing, 4E-BP1 and p4E-BP1 expression also gradually increased. Then, we used Everolimus to inhibit the phosphorylation of 4E-BP1 and found that Everolimus effectively reduced cloning formation, inhibited cell migration, and promoted apoptosis in a dose-dependent manner in PC3 cells. CONCLUSIONS: These findings suggest that p4E-BP1 is a potential biomarker and therapy target for prostate cancer, and patients with high expressions of p4E-BP1 may benefit from Everolimus treatment.


Assuntos
Everolimo , Neoplasias da Próstata , Everolimo/farmacologia , Humanos , Imuno-Histoquímica , Masculino , Fosfoproteínas , Fosforilação
17.
Arch Toxicol ; 96(2): 559-570, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048155

RESUMO

Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 µM) significantly inhibited the cell viability and migration ability (5 µM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 µM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Triazóis/toxicidade , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/toxicidade , Técnicas de Silenciamento de Genes , Humanos , Triazóis/administração & dosagem , Trofoblastos/citologia , Regulação para Cima/efeitos dos fármacos
18.
J Hazard Mater ; 424(Pt C): 127624, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740159

RESUMO

To identify key signaling pathways involved in ambient particulate matter (PM)-induced pulmonary injury, we generated a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit), and conducted experiments in a real-ambient PM exposure system. PP2A Aα-/- homozygote (Aα HO) mice and matched wild-type (WT) littermates were exposed to PM over 3-week and 6-week. The effects of PM exposure on pulmonary inflammation, oxidative stress, and apoptosis were significantly enhanced in Aα HO compared to WT mice. The number of pulmonary macrophages increased by 74.8~88.0% and enhanced M1 polarization appeared in Aα HO mice upon PM exposure. Secretion of M1 macrophage-related inflammatory cytokines was significantly increased in Aα HO vs. WT mice following PM exposure. Moreover, we demonstrated that PP2A-B56α holoenzyme regulated M1 polarization and that the mTOR signaling pathway mediated the persistent M1 polarization upon PM2.5 exposure. Importantly, PP2A-B56α holoenzyme was shown to complex with mTOR/p70S6K/4E-BP1, and suppression of B56α led to enhanced phosphorylation of mTOR, p70S6K, and 4E-BP1. These observations demonstrate that the PP2A-mTOR-p70S6K/4E-BP1 signaling is a critical pathway in mediating macrophage M1 polarization, which contributes to PM-induced pulmonary injury.


Assuntos
Lesão Pulmonar , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Lesão Pulmonar/induzido quimicamente , Macrófagos Alveolares , Camundongos , Material Particulado/toxicidade , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Eur J Med Chem ; 228: 113954, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772527

RESUMO

Modulating the glucose transport in skeletal muscle is a promising strategy for ameliorating glucose homeostasis disorders. However, the complicated mechanisms of glucose transport make it difficult to find compounds therapeutically relevant molecular mechanisms of action, while phenotypic screening is thought to be an alternative approach to mimic the cell state of interest. Here, we report (±)-seneciobipyrrolidine (1a) is first found to enhance glucose uptake in L6 myotubes through phenotype-based screening. Further SAR investigation led to the identfication of compound A27 (EC50 = 2.7 µM). Proteomiic analysis discloses the unique function mechanism of A27 through upregulating the level of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), subsequently enhancing the Akt and AMPK phosphorylation, thereby promoting the glucose uptake. Chronic oral administration of A27 significantly lowers blood glucose and improves glucose tolerance in db/db mice. This work is new research on seneciobipyrrolidine derivatives, providing a promising avenue for ameliorating glucose homeostasis.


Assuntos
Antipsicóticos/farmacologia , Glicemia/efeitos dos fármacos , Descoberta de Drogas , Transtornos Psicóticos/tratamento farmacológico , Pirrolidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antipsicóticos/síntese química , Antipsicóticos/química , Glicemia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transtornos Psicóticos/metabolismo , Pirrolidinas/síntese química , Pirrolidinas/química , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769253

RESUMO

Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Morfolinas/farmacologia , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Carcinoma Hepatocelular/patologia , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA