Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Neuroinflammation ; 21(1): 235, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334421

RESUMO

Pathogenic germline mutations in the P-type copper-transporting ATPase (ATP7B) gene cause Wilson's disease (WD), a hereditary disorder characterized by disrupted copper metabolism. The Arg778Leu (R778L) mutation in exon 8 is prevalent among individuals with WD in East Asia and is associated with more severe phenotypes. In this study, we generated a WD mouse model harboring R778L mutation (R778L mice) using CRISPR/Cas9. R778L mice exhibit a range of pathological characteristics resembling those of patients with WD and the same point mutations, including aberrant copper metabolism, pathological cellular injury, inflammation, and severe hepatic fibrosis. At 3-5 months of age, these mice started to display neurological deficits in motor coordination and cognitive dysfunction, accompanied by increased expression of inflammatory cytokines in the central nervous system. Microglia in the striatum and cortex exhibit significant activation, shorter processes, and decreased branch points. However, the Cu2+ levels in the brain tissue of R778L mice did not differ significantly from those of wild-type mice. Notably, inhibition of hepatic inflammation with PJ34 or siNfkb markedly alleviated the deficiencies in cognitive performance and improved locomotor activity in R778L mice. Thus, this study establishes a novel murine model to investigate the pathophysiology of WD, highlights the liver-brain crosstalk responsible for neurological manifestations in individuals with WD caused by the R778L point mutation, and demonstrates the potential of modulating liver inflammation as a therapeutic strategy for alleviating the neurological manifestations of WD.


Assuntos
ATPases Transportadoras de Cobre , Cobre , Modelos Animais de Doenças , Degeneração Hepatolenticular , Animais , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Degeneração Hepatolenticular/genética , Cobre/metabolismo , Camundongos , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Masculino , Inflamação/metabolismo , Inflamação/patologia
2.
J Pediatr Gastroenterol Nutr ; 79(4): 807-817, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39113473

RESUMO

BACKGROUND AND OBJECTIVES: Wilson's disease (WD) in children and adolescents is predominantly asymptomatic or oligo-symptomatic. The symptoms are nonspecific and difficult to distinguish from other hepatic or neuropsychiatric disorders. In this study, we present the experience of a pediatric referral center for WD diagnosis and treatment. PATIENTS AND METHODS: We retrospectively analyzed clinical and laboratory data from 99 patients with WD of Sardinian origin, including physical examination, laboratory biochemical testing, liver biopsy, and genetic analysis. RESULTS: Patients were prevalently oligo-symptomatic or asymptomatic. The median age of diagnosis was 8.78 years. Ceruloplasmin values were lower than normal values in all analyzed patients. Twenty-four-hour urinary copper levels were higher than 40 µg/24-h in 92/96 patients. In all analyzed patients with the exception of one, liver copper was higher than 250 µg/g of dry weight but all had >75 µg/g of dry weight. Statistical analysis showed correlation between the age at diagnosis, serum copper, and 24-h urinary copper. Correlation was also found between serum copper and 24-h urinary copper. Molecular analysis of ATP7B gene allowed complete characterization in all the analyzed patients. CONCLUSION: A high index of clinical suspicion and biochemical tests including liver tests, serum ceruloplasmin, and basal 24-h urinary copper excretion and genotype determination are key to WD diagnosis. The long experience that a referral center for WD possesses is an important factor in making WD diagnosis a more accurate process. Studies in animal models on WD could be used as a guide to further investigate the molecular mechanisms that regulate copper metabolism and influence the natural history of WD.


Assuntos
Ceruloplasmina , ATPases Transportadoras de Cobre , Cobre , Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/sangue , Criança , Masculino , Feminino , Estudos Retrospectivos , Adolescente , Cobre/urina , Cobre/sangue , Cobre/metabolismo , Ceruloplasmina/metabolismo , Ceruloplasmina/análise , Pré-Escolar , Itália , ATPases Transportadoras de Cobre/genética , Fígado/patologia , Fígado/metabolismo , Encaminhamento e Consulta , Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética
3.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39201720

RESUMO

Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.


Assuntos
Autoimunidade , Degeneração Hepatolenticular , Inflamação , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/imunologia , Autoimunidade/genética , Inflamação/genética , Inflamação/imunologia , Animais , Cobre , ATPases Transportadoras de Cobre/genética , Mutação
4.
Intern Med ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38960689

RESUMO

A 19-year-old Japanese man was referred for a further evaluation of liver dysfunction. Despite the absence of symptoms or obesity, the liver biopsy results were consistent with non-alcoholic steatohepatitis. Subsequent investigations revealed low serum ceruloplasmin, increased urinary copper excretion, and a known mutation c.3809A>G (p.Asn1270Ser) in the copper-transporting enzyme P-type ATPase (ATP7B) gene, leading to a diagnosis of Wilson's disease. A previously unreported variant, i.e., c.3866A>T (p.Asp1289Val) was detected on the patient's other allele and was considered a novel mutation, classified as 'likely pathogenic' according to the American College of Medical Genetics guidelines.

5.
Zhonghua Gan Zang Bing Za Zhi ; 32(6): 558-562, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38964899

RESUMO

Objective: To explore the genotype-phenotype relationship of Wilson's disease (WD) and further study the mutation spectrum in the ATP7B gene. Methods: The clinical data and genetic test results of 115 cases with WD diagnosed in the First Affiliated Hospital of Zhengzhou University from 2015 to 2022 were retrospectively analyzed. The rank sum test was used for quantitative data comparison, and χ(2) test was used for count data comparison. Multivariate logistic regression was used to analyze the relationship between patients' genotype and phenotype. Results: The onset of liver manifestations (hepatic type) accounted for 60.9%, neurological symptoms (cerebral type) for 13.0%, and mixed hepato-cerebral symptoms for 26.1%. Presymptomatic individuals (hepatic types) accounted for 62.9%. Next-generation sequencing- diagnosed WD cases accounted for 87.8%. Combined multiplex ligation-dependent probe amplification assay-diagnosed WD cases accounted for 89.6%. A single case with a detected pathogenic locus accounted for 10.4%. The diagnostic rate of WD by genetic testing combined with clinical data was 100%. A total of 76 ATP7B mutations were detected, and the top three mutation frequencies were c.2333G>T (p.Arg778Leu) (30.7%), c.2975C>T (p.Pro992Leu) (7.3%), and c.2621C>T (p.Ala874Val) (6.4%). The mutations were mainly distributed in exons 8, 11-13, and 15-18, accounting for more than 90% of the total mutations. Eight new mutations were found, including c.3724G>A (p.Glu1242Lys), c.3703G>C (p.Gly1235Arg), c.3593T>C (p.Val1198Ala), c.2494A>C (p.Lys832Gln), c.1517T>A (p.Ile506Lys), c.484G>T (p.Glu162Ter), c.1870-49A>G, and the missing of exons 10-21. Liver histopathology showed cellular edema, degeneration, inflammation, and necrosis, as well as a 42.8% copper staining positive rate. Genotype-phenotype analysis showed that the p.Arg778Leu mutation had higher alanine aminotransferase (ALT) levels than those carrying other mutations (P=0.024), while the homozygous mutation of p.Arg778Leu was associated with cerebral-type patients (P=0.027). Conclusion: Genetic testing plays an important role in the diagnosis of WD. p.Arg778Leu is the first high-frequency mutation in the Chinese population, and patients carrying it have higher ALT levels. The p.Arg778Leu homozygous mutation is prone to causing cerebral-type WD. This study expands the ATP7B gene mutation spectrum.


Assuntos
ATPases Transportadoras de Cobre , Genótipo , Degeneração Hepatolenticular , Mutação , Fenótipo , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/diagnóstico , ATPases Transportadoras de Cobre/genética , Estudos Retrospectivos , Feminino , Masculino , Proteínas de Transporte de Cátions/genética , Estudos de Associação Genética , Adulto , Adenosina Trifosfatases/genética , Adulto Jovem , Adolescente , Criança , Testes Genéticos , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala
6.
Clin Res Hepatol Gastroenterol ; 48(5): 102335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588792

RESUMO

BACKGROUND AND STUDY AIMS: In Morocco the prevalence of Wilson disease (WD) and the spectrum of mutations are not known. The aim of the present study was to estimate the prevalence of WD in Morocco, to evaluate the phenotype among a large cohort of WD patients, and to characterize ATP7B variants in a subgroup of WD patients. PATIENTS AND METHODS: We collected data from 226 patients admitted to five university hospital centers in Morocco between 2008 and 2020. The diagnosis was based on clinical manifestations, function tests and biochemical parameters. The genotype was characterized in 18 families diagnosed at the University Hospital Center of Marrakesh, by next generation sequencing. RESULTS: The mean annual prevalence in Morocco was 3.88 per 100,000 and the allele frequency was 0.15 %. Among the 226 patients included (121 males and 105 females), 196 were referred for a hepatic or neurological involvement and 30 were asymptomatic. The mean age at diagnosis was 13 ± 5.1 years (range: 5 - 42 years). Consanguinity was found in 63.3 % of patients. The mean duration of illness was 2.8 ± 1.9 years. Kayser-Fleischer rings were found in 131 (67.9 %) of 193 patients. Among the 196 symptomatic patients, 141/159 (88.7 %) had low serum ceruloplasmin (<0.2 g/L) and a high 24-hours urinary copper (>100 µg/day) was found in 173/182 (95.1 %) patients. The initial treatment was D-penicillamine in 207 patients, zinc acetate in five, zinc sulfate in five, and nine patients were not treated; 60/207 (29 %) patients have stopped treatment. A total of 72 patients died; the mortality rate was 31.9 %. Eight different ATP7B variants were identified among the 18 patients studied, of which two were novel (p.Cys1104Arg and p.Gln1277Hisfs*52), and six previously published (p.Gln289Ter, p.Cys305Ter, p.Thr1232Pro, p.Lys1020Arg, p.Glu583ArgfsTer25 and c.51+4A>T). All informative patients were homozygous for the disease-causing mutation. CONCLUSION: In Morocco, a high prevalence due to consanguinity and a high mortality rate due to the difficulty of diagnosis and lack of treatment were observed in WD patients. NGS sequencing identified new ATP7B variants in WD patients from Morocco.


Assuntos
ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Fenótipo , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/epidemiologia , Degeneração Hepatolenticular/diagnóstico , Marrocos/epidemiologia , Masculino , Feminino , Adulto , Adolescente , Criança , Adulto Jovem , Pré-Escolar , ATPases Transportadoras de Cobre/genética , Mutação , Prevalência , Ceruloplasmina/análise , Consanguinidade , Genótipo
7.
Regen Ther ; 27: 73-82, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38525238

RESUMO

Wilson disease (WD), also known as hepatolenticular degeneration, is an autosomal recessive disorder characterized by disorganized copper metabolism caused by mutations in the ATP7B gene. Currently, the main treatment options for WD involve medications such as d-penicillamine, trientine hydrochloride, zinc acetate, and liver transplantation. However, there are challenges that encompass issues of poor compliance, adverse effects, and limited availability of liver sources that persist. Stem cell therapy for WD is currently a promising area of research. Due to the advancement in stem cell directed differentiation technology in vitro and the availability of sufficient stem cell donors, it is expected to be a potential treatment option for the permanent correction of abnormal copper metabolism. This article discusses the research progress of stem cell therapy for WD from various sources, as well as the challenges and future prospects of the clinical application of stem cell therapy for WD.

8.
Biochim Biophys Acta Biomembr ; 1866(4): 184306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408697

RESUMO

Human copper transporters ATP7B and ATP7A deliver copper to biosynthetic pathways and maintain copper homeostasis in the cell. These enzymes combine several challenges for structural biology because they are large low abundance membrane proteins with many highly mobile domains and long disordered loops. No method has yet succeeded in solving the structure of the complete fully functional protein. Still, X-ray crystallography, Cryo-EM and NMR helped to piece together a structure based model of the enzyme activity and regulation by copper. We review the structures of ATP7B and ATP7A with an emphasis on the mechanistic insights into the unique aspects of the transport function and regulation of the human copper ATPases that have emerged from more than twenty years of research.


Assuntos
Proteínas de Transporte de Cátions , Cobre , Humanos , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Cobre/química , Proteínas de Transporte de Cátions/metabolismo , Homeostase
9.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307383

RESUMO

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Assuntos
Complexo 1 de Proteínas Adaptadoras , ATPases Transportadoras de Cobre , Endossomos , Transporte Proteico , Receptor IGF Tipo 2 , Rede trans-Golgi , Humanos , Endossomos/metabolismo , Células HeLa , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo
10.
Traffic ; 25(1): e12920, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886910

RESUMO

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Assuntos
Degeneração Hepatolenticular , Animais , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Hepatócitos/metabolismo
11.
Intern Med ; 63(1): 71-75, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121747

RESUMO

A 73-year-old woman was referred to our hospital for persistent liver dysfunction. When the patient was 45 years old, her youngest sister had been diagnosed with Wilson disease (WD). The patient therefore underwent several family screening tests, all of which were unremarkable. She had an annual medical checkup and was diagnosed with liver dysfunction and fatty liver at 68 years old. A liver biopsy and genetic testing were performed, and she was diagnosed with WD; chelation therapy was then initiated. In patients with hepatic disorders and a family history of WD, multiple medical examinations should be conducted, as the development of WD is possible regardless of age.


Assuntos
Degeneração Hepatolenticular , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Idoso , Pessoa de Meia-Idade , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Testes Genéticos , Cobre , Pacientes
12.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032054

RESUMO

The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.


Assuntos
Cobre , Degeneração Hepatolenticular , Animais , Humanos , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Degeneração Hepatolenticular/genética , Mamíferos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator de Transcrição AP-1/metabolismo
13.
BMC Med Genomics ; 16(1): 307, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037104

RESUMO

BACKGROUND: ATP7B is a copper-transporting protein that contributes to the chemo-resistance of human cancer cells. It remains unclear what the molecular mechanisms behind ATP7B are in cancer, as well as its role in human pan-cancer studies. METHODS: Our study evaluated the differential expression of ATP7B in cancer and paracancerous tissues based on RNA sequencing data from the GTEx and TCGA. Kaplan-Meier and Cox proportional hazards regressions were used to estimate prognostic factors associated with ATP7B.The correlations between the expression of ATP7B and immune cell infiltration, tumor mutation burden, microsatellite instability and immune checkpoint molecules were analyzed. Co-expression networks and mutations in ATP7B were analyzed using the web tools. An analysis of ATP7B expression difference on drug sensitivity on tumor cells was performed using the CTRP, GDSC and CMap database. RESULTS: ATP7B expression differed significantly between cancerous and paracancerous tissues. The abnormal expression of ATP7B was linked to prognosis in LGG and KIRC. Infiltration of immune cells, tumor mutation burden, microsatellite instability and immunomodulators had all been linked to certain types of cancer. Cancer cells exhibited a correlation between ATP7B expression and drug sensitivity. CONCLUSION: ATP7B might be an immunotherapeutic and prognostic biomarker based on its involvement in cancer occurrence and development.


Assuntos
Instabilidade de Microssatélites , Neoplasias , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Adjuvantes Imunológicos , Bases de Dados Factuais , Prognóstico
14.
Front Cell Infect Microbiol ; 13: 1267931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106478

RESUMO

Copper, a vital element in various physiological processes, is transported from the gastrointestinal tract to tissues and cells through diverse copper transporters. Among these transporters, ATP7A and ATP7B play significant roles in regulating systemic copper metabolism and exhibit precise regulation in their intracellular trafficking. These transporters undergo dynamic shuttling between the trans-Golgi network (TGN) and the plasma membrane via the endocytic recycling mechanism, which involves the retromer and other associated factors. Interestingly, the antimicrobial attribute of copper implies a potential connection between microbial infection and copper metabolism. Several microbes, including Salmonella enterica, Cryptococcus, Influenza A virus (IAV) and Zika virus (ZIKV) have been observed to impact the regulatory mechanisms of ATP7A/B, either directly or indirectly, as a means of survival. This review summarizes the key features and trafficking mechanisms of the copper transporters ATP7A/B, and examines the intricate interplay between microbes and copper metabolism. Ultimately, it highlights how microbes can perturb copper homeostasis through interactions with host factors, offering valuable insights into the mechanistic aspects of host-microbe interactions.


Assuntos
Proteínas de Transporte de Cátions , Infecção por Zika virus , Zika virus , Humanos , Cobre/metabolismo , Adenosina Trifosfatases , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo
15.
Traffic ; 24(12): 587-609, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37846526

RESUMO

In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.


Assuntos
Cobre , Lisossomos , Cobre/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Transporte Proteico , Lisossomos/metabolismo , Exocitose
16.
Gene ; 887: 147728, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634880

RESUMO

BACKGROUND: Wilson disease is caused by pathogenic variants in the ATP7B gene which encodes a copper-transporting ATPase. AIMS: Describe a common founder pathogenic variant among Bukharan Jews and to assess its prevalence, clinical features, and outcome. METHODS: The cohort consisted of patients of Bukharan Jewish descent diagnosed with Wilson disease at a tertiary pediatric medical center in 2013-2018. Clinical and genetic data were collected and analyzed. RESULTS: Six patients from 4 unrelated families who were homozygous for the c.3784G > T p.(Val1262Phe) pathogenic variant in ATP7B were identified. Five presented with elevated aminotransferase levels, and one, with acute liver failure. Mean age at diagnosis was 8.7 years (5-12.5). Serum ceruloplasmin level was extremely low in all patients (1.9-7 mg/dL; mean 3.2(. The variant was identified in a heterozygous state in 5/153 Bukharan Jews; 2/33 from our local exome database and 3/120 healthy unrelated Bukharan Jews in another cohort, for an estimated carrier frequency of ∼1:30. CONCLUSIONS: We report a common founder pathogenic variant in the ATP7B gene among Bukharan Jews associated with severe early-onset Wilson disease. Given the clinical severity, high frequency of the variant, and being a treatable disease, its inclusion in pre-symptomatic screening in the Bukharan Jewish community should be considered. Furthermore, WD should be part of future genetic newborn screening programs in Israel and worldwide, to enable early treatment and prevention of future life-threatening complications.


Assuntos
Degeneração Hepatolenticular , Recém-Nascido , Humanos , Criança , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/epidemiologia , Judeus/genética , Israel/epidemiologia , ATPases Transportadoras de Cobre/genética , Testes Genéticos , Heterozigoto , Mutação
17.
JFMS Open Rep ; 9(1): 20551169231177275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427085

RESUMO

Case summary: A 2-year-old spayed female domestic longhair cat was presented for evaluation of chronic ocular discharge and occasional vomiting. While physical examination findings were consistent with an upper respiratory infection (URI), serum chemistry results revealed increased liver enzyme activities. Histopathologic examination of a liver biopsy identified substantial centrilobular accumulation of copper in hepatocytes - strongly suggestive of primary copper hepatopathy (PCH). Retrospective cytologic examination of a liver aspirate also identified copper aggregates in hepatocytes. After transitioning to a low-copper diet, 1 year of chelation therapy with D-penicillamine achieved normalization of liver enzyme activities and resolution of persistent ocular signs. Subsequently, a long-term regimen of zinc gluconate has been successfully managing the cat's PCH for almost 3 years. Sanger sequencing of the cat's ATP7B gene, which encodes a copper-transporting protein, revealed a novel, 'likely pathogenic', single nucleotide variation (c.3670t/a [p.Trp1224Arg]), for which the cat is heterozygous. Relevance and novel information: Recommendations are described for the long-term clinical management of feline PCH - a previously attainable but unreported outcome - with considerations for mitigating the speculated oxidation-exacerbated ocular risks of concurrent URI. This report is the first to include identification of copper aggregates in a liver aspirate from a cat - evidence that liver aspirates from cats could be routinely examined for copper as is standard practice for those from dogs. The cat is also the first reported with PCH and a 'likely pathogenic' heterozygous ATP7B genotype, which suggests that normal ATP7B alleles could be recessive to or incompletely/co- dominant with deleterious ATP7B alleles in cats, as has been reported in other species.

18.
Clin Genet ; 104(2): 174-185, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157876

RESUMO

Wilson's disease (WD, MIM#277900) is an autosomal recessive disorder resulting in copper excess caused by biallelic variants in the ATP7B gene (MIM#606882) encoding a copper transporting P-type ATPase. ATP7B variants of unknown significance (VUS) are detected frequently, sometimes impeding a clear diagnosis. Functional analyses can help to classify these variants as benign or pathogenic. Additionally, variants already classified as (likely) pathogenic benefit from functional analyses to understand their pathomechanism, thus contribute to the development of personalized treatment approaches in the future. We described clinical features of six WD patients and functionally characterized five ATP7B missense variants (two VUS, three yet uncharacterized likely pathogenic variants), detected in these patients. We determined the protein level, copper export capacity, and cellular localization in an in vitro model and potential structural consequences using an ATP7B protein model based on AlphaFold. Our analyses give insight into the pathomechanism and allowed reclassification for the two VUS to likely pathogenic and for two of the three likely pathogenic variants to pathogenic.


Assuntos
ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Humanos , Cobre , ATPases Transportadoras de Cobre/genética , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/genética , Mutação de Sentido Incorreto/genética
19.
Metallomics ; 15(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37070960

RESUMO

As a copper (Cu) transport ATPase, ATP7B plays an important role in maintaining Cu homeostasis in the body and its dysfunction is associated with retinal disease. How ATP7B dysfunction and the subsequent Cu overload induce retinal damage, however, are unknown. Here, we show that atp7b-/- homozygous zebrafish larvae are insensitive to light stimulation, with a reduction in retinal cells but normal like morphological phenotypes. Additionally, a series of differentially expressed genes are unveiled in atp7b-/- mutated larvae, which enrich in photo-transduction, structural constituent of eye lens, sensory perception of light stimulus, oxidative phosphorylation, and ATPase activity. Moreover, we show the Cu accumulation in retinal cells in atp7b-/- mutated larvae, which results in endoplasmic reticulum (ER) stress and retinal cell apoptosis and subsequent retinal defects. The integral data in this study demonstrate that atp7b mutation leads to Cu accumulation in zebrafish retinal cells and the consequence ER stress and retinal cell death. These data may give some possible hints to explain retinal disease occurred in the Cu dysregulation syndromes Wilson's disease with ATP7B mutation.


Assuntos
Proteínas de Transporte de Cátions , Degeneração Hepatolenticular , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Transporte de Cátions/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Cobre/metabolismo , Mutação
20.
Front Pediatr ; 11: 1107280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063668

RESUMO

Background: Alport syndrome (AS) and Wilson's disease (WD) are genetic diseases that could lead to kidney damage. Herein, we report the clinical features and gene variants in a patient with WD and X-linked AS. Case presentation: The proband was a 12-year-old boy diagnosed with AS coexisting with WD at the age of 11 years. The patient underwent a medical check-up when he was 4 years and 8 months. Laboratory tests revealed elevated liver enzymes, decreased serum ceruloplasmin, increased 24-h urinary copper excretion, and one variant in the ATP7B gene. Then, the patient was diagnosed with WD. After 2 months of treatment with D-penicillamine and zinc salt, his liver function had recovered to normal levels, but he presented with microscopic hematuria. The hematuria did not resolve after switching to dimercaptosuccinic acid from D-penicillamine. In addition, he presented with proteinuria 3 years later. A renal biopsy was performed more than 6 years after the patient was diagnosed with WD, and electron microscopy showed that the basement membrane thickness was uneven, layered, and focal torn. Copper staining was negative. A genetic analysis identified a hemizygous variant (c.1718G > A, p. Gly573Asp) in COL4A5 and a homozygous variant (c.2975C > T, p. Pro992leu) in ATP7B. The patient's urine protein-creatinine ratio was less than 1.0 mg/mg after a 1 year of follow-up, after enalapril was administered for treating AS. Conclusion: This case highlights a lack of improvement in renal function after conventional treatment provides a possible indication for performing renal biopsy or genetic testing to determine the etiology in order to facilitate subsequent clinical management. Clinicians should prevent the occurrence of diagnostic inaccuracies caused by diagnostic anchoring because an accurate diagnosis is essential for achieving precise treatment and improved prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA