Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 1042651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339568

RESUMO

Chronic pancreatitis (CP) is a precancerous illness linked to pancreatic ductal adenocarcinoma (PDAC), although the evolutionary mechanism is uncertain. CP is distinguished by severe fibrosis caused by the activation of pancreatic stellate cells (PSCs). The current clinical therapeutic protocol for CP lacks specific therapeutic medicines for the prevention and suppression of inflammation and fibrosis aggravating in CP. More research on specifically targeting PSCs would help facilitate the development of novel therapies for pancreatic fibrosis. Notably, using natural compounds from medicinal plants as new antifibrotic agents has become a focus of recent research and is widely employed as an alternative and complementary approach. Our goal was to shed light on the role of PSCs in the development of CP and provide a focused update on the new potential therapeutic strategies against PSCs in CP models. Future studies can refer to these possible strategies for drug design, bioavailability, pharmacokinetics, and other issues to obtain better clinical outcomes for treating CP.

2.
EBioMedicine ; 80: 104069, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35605429

RESUMO

BACKGROUND: We conducted an exploratory study to assess the safety tolerability, and anti-fibrotic effects of PRI-724, a CBP/ß-catenin inhibitor, in patients with hepatitis C virus (HCV)- and hepatitis B virus (HBV)-induced cirrhosis. METHODS: This multicentre, open-label, non-randomised, non-placebo-controlled phase 1/2a trial was conducted at three hospitals in Japan. Between July 27, 2018, and July 13, 2021, we enrolled patients with HCV- and HBV-induced cirrhosis classified as Child-Pugh (CP) class A or B. In phase 1, 15 patients received intravenous infusions of PRI-724 at escalating doses of 140, 280, and 380 mg/m2/4 h twice weekly for 12 weeks. In phase 2a, 12 patients received the recommended PRI-724 dose. The primary endpoints of phases 1 and 2a were the frequency and severity of adverse events and efficacy in treating cirrhosis based on liver biopsy. This study was registered at ClinicalTrials.gov (no. NCT03620474). FINDINGS: Three patients from phase 1 who received the recommended PRI-724 dose were evaluated to obtain efficacy and safety data in phase 2a. Serious adverse events occurred in three patients, one of which was possibly related to PRI-724. The most common adverse events were diarrhoea and nausea. PRI-724 did not decrease hepatic fibrosis with any statistical significance, either by ordinal scoring or measurement of collagen proportionate area at 12 weeks; however, we observed statistically significant improvements in liver stiffness, Model for End-stage Liver Disease score, and serum albumin level. INTERPRETATION: Intravenous administration of 280 mg/m2/4 h PRI-724 over 12 weeks was preliminarily assessed to be well tolerated; however, further evaluation of anti-fibrotic effects in patients with cirrhosis is warranted. FUNDING: AMED, Ohara Pharmaceutical.


Assuntos
Doença Hepática Terminal , Hepatite C Crônica , Hepatite C , Herpesvirus Cercopitecino 1 , Antivirais/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes , Doença Hepática Terminal/induzido quimicamente , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/tratamento farmacológico , Pirimidinonas , Índice de Gravidade de Doença , Resultado do Tratamento , beta Catenina
3.
Anticancer Res ; 42(6): 2847-2857, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35641258

RESUMO

BACKGROUND/AIM: The objective of this study was to prepare doxorubicin encapsulated in micelles (DOX-micelles) using poly(hexadecanyloxyethylene glycol-lactate phosphate), which we recently synthesized, and to evaluate the anticancer effect of DOX-micelles in vitro and in vivo. MATERIALS AND METHODS: To evaluate the anticancer effect of DOX-micelles in vitro, three-dimensional spheroids composed of B16 mouse melanoma cells and fibroblasts were prepared by changing the ratio of cancer cells to fibroblasts. In addition, for efficient doxorubicin treatment of the cells present in the center of the spheroids, tranilast, an anti-fibrotic drug was added to the spheroids before treatment with DOX-micelles, then the amount of doxorubicin and cell viability of spheroids were evaluated. Moreover, to assess the effects of the combination of DOX-micelles with tranilast in vivo, relative tumor volume was investigated in a mouse model of melanoma. RESULTS: The mean diameter and doxorubicin content of DOX-micelles were 93.3 nm and 3.5%, respectively. When the ratio of cancer cells to fibroblasts was 20:80, spheroids with spherical and rigid shapes were obtained. In addition, the amount of doxorubicin in the spheroids was increased by tranilast treatment, and an efficient anticancer effect was also observed. The anticancer effect of the combination of tranilast and DOX-micelles was confirmed in vivo. CONCLUSION: Micelles encapsulating doxorubicin are promising for cancer therapy, and their anticancer effect is improved by tranilast pretreatment in 3D spheroids in vivo.


Assuntos
Melanoma , Micelas , Animais , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina , Portadores de Fármacos , Humanos , Melanoma/tratamento farmacológico , Camundongos , ortoaminobenzoatos
4.
Respir Res ; 21(1): 25, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941499

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease without a cure and new drug strategies are urgently needed. Differences in behavior between diseased and healthy cells are well known and drug response can be different between cells isolated from IPF patients and controls. The macrolide Azithromycin (AZT) has anti-inflammatory and immunomodulatory properties. Recently anti-fibrotic effects have been described. However, the anti-fibrotic effects on primary IPF-fibroblasts (FB) directly compared to control-FB are unknown. We hypothesized that IPF-FB react differently to AZT in terms of anti-fibrotic effects. METHODS: Primary normal human lung and IPF-FB were exposed to TGF-ß (5 ng/ml), Azithromycin (50 µM) alone or in combination prior to gene expression analysis. Pro-collagen Iα1 secretion was assessed by ELISA and protein expression by western blot (αSMA, Fibronectin, ATP6V1B2, LC3 AB (II/I), p62, Bcl-xL). Microarray analysis was performed to screen involved genes and pathways after Azithromycin treatment in control-FB. Apoptosis and intraluminal lysosomal pH were analyzed by flow cytometry. RESULTS: AZT significantly reduced collagen secretion in TGF-ß treated IPF-FB compared to TGF-ß treatment alone, but not in control-FB. Pro-fibrotic gene expression was similarly reduced after AZT treatment in IPF and control-FB. P62 and LC3II/I western blot revealed impaired autophagic flux after AZT in both control and IPF-FB with significant increase of LC3II/I after AZT in control and IPF-FB, indicating enhanced autophagy inhibition. Early apoptosis was significantly higher in TGF-ß treated IPF-FB compared to controls after AZT. Microarray analysis of control-FB treated with AZT revealed impaired lysosomal pathways. The ATPase and lysosomal pH regulator ATP6V0D2 was significantly less increased after additional AZT in IPF-FB compared to controls. Lysosomal function was impaired in both IPF and control FB, but pH was significantly more increased in TGF-ß treated IPF-FB. CONCLUSION: We report different treatment responses after AZT with enhanced anti-fibrotic and pro-apoptotic effects in IPF compared to control-FB. Possibly impaired lysosomal function contributes towards these effects. In summary, different baseline cell phenotype and behavior of IPF and control cells contribute to enhanced anti-fibrotic and pro-apoptotic effects in IPF-FB after AZT treatment and strengthen its role as a new potential anti-fibrotic compound, that should further be evaluated in clinical studies.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Azitromicina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática , Pulmão/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apoptose/fisiologia , Azitromicina/uso terapêutico , Células Cultivadas , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fator de Crescimento Transformador beta/farmacologia
5.
Respir Investig ; 57(4): 300-311, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30853366

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a most common progressive interstitial lung disease (ILD) of unknown etiology, although majority of patients are elderly male smokers. The main pathogenesis is aberrant recovery of epithelial injury and collagen deposition. Fibrotic nonspecific interstitial pneumonia, connective tissue disease (CTD) especially rheumatoid arthritis (RA) associated ILD, and chronic hypersensitivity pneumonia(CHP) are important differential diagnosis. Main symptoms are non-productive cough and progressive exertional dyspnea. Crucial physical findings are scalene muscle hypertrophy, bibasilar fine crackles, and finger clubbing. The serum markers such as lactate dehydrogenase (LDH) and Krebs von den Lungen-6 (KL-6) are sensitive for ILD detection and activity. Both pulmonary function test (PFT) and the 6-minute walk test (6MWT) are useful tool for evaluation of disease progression of IPF. Serial changes of forced vital capacity (FVC) and 6MWT distance predict mortality in IPF effectively. Recently published international IPF guidelines highlight the importance of chest high resolution computed tomography (HRCT) findings such as honeycombing, traction bronchiectasis (TBE), and sub-pleural reticular opacity. IPF is chronic and progressive; therefore, tracking disease behavior is crucial. Unifying clinical, physiological, and imaging information over time is useful. With regard to its management, two anti-fibrotic drugs such as pirfenidone and nintedanib have been available. These drugs can slow the decline of FVC and prevent acute exacerbation (AE). In this review, I outline the clinical characteristics of IPF, physiological, imaging, pathological findings and review diagnosis process and management.


Assuntos
Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Biomarcadores/sangue , Doença Crônica , Tosse/etiologia , Diagnóstico Diferencial , Progressão da Doença , Dispneia/etiologia , Humanos , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/patologia , Indóis/uso terapêutico , L-Lactato Desidrogenase/sangue , Mucina-1/sangue , Piridonas/uso terapêutico , Testes de Função Respiratória , Tomografia Computadorizada por Raios X , Capacidade Vital
6.
J Cell Physiol ; 233(1): 422-433, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28294327

RESUMO

Although the cause for bone marrow fibrosis in patients with myelofibrosis remains controversial, it has been hypothesized that it is caused by extensive fibroblast proliferation under the influence of cytokines generated by the malignant megakaryocytes. Moreover, there is no known drug therapy which could reverse the process. We studied the fibroblasts in a novel system using the hanging drop method, evaluated whether the fibroblasts obtain from patients are part of the malignant clone of not and, using this system, we screen a large library of FDA-approved drugs to identify potential drugs candidates that might be useful in the treatment of this disease, specifically which would inhibit fibroblast proliferation and the development of bone marrow fibrosis. We have found that the BM fibroblasts are not part of the malignant clone, as previously suspected and two immunosuppressive medications-cyclosporine and mycophenolate mophetil, as most potent suppressors of the fibroblast collagen production thus potentially inhibitors of bone marrow fibrosis production in myelofibrosis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Ciclosporina/farmacologia , Descoberta de Drogas/instrumentação , Fibroblastos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Ácido Micofenólico/farmacologia , Mielofibrose Primária/tratamento farmacológico , Linhagem Celular , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Cinética , Mutação , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA