Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Med Genomics ; 17(1): 160, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879467

RESUMO

BACKGROUND: Fibrodysplasia Ossificans Progressiva (FOP; OMIM #135100) is an ultrarare genetic disorder characterised by congenital bilateral hallux valgus (CBHV), intermittent soft tissue swellings and progressive heterotopic ossification. We report a three-month-old girl with great toe abnormalities similar to FOP, in whom comprehensive clinical workup and genetic investigations illustrates an alternative diagnosis. CASE PRESENTATION: A three-month-old girl presented with CBHV. The antenatal period was unremarkable, she was born by spontaneous vaginal delivery with an uneventful subsequent course, except for maternal concern of her bent toes which received reassurance from several health professionals. Her mother's persisting concerns were explored via the internet and social media leading her to request referral to an expert bone centre for consideration of FOP. On examination, she was thriving, there was no dysmorphism, subcutaneous lumps, skeletal or extra-skeletal deformity except for shortened great toes with lateral deviation of the proximal and distal phalanges. FOP was a feasible diagnosis, for which CBHV is highlighted as an early sign. A cautionary potential diagnosis of FOP was counselled, including advice to defer intramuscular immunisations until genetic results available. Genetic investigation was undertaken through rapid whole genomic sequencing (WGS), with analysis of data from a skeletal dysplasia gene panel, which demonstrated no ACVR1variants. The only finding was a heterozygous variant of unknown significance in BMPR1B (c1460T>A, p.(Val487Asp)), which encodes a bone morphogenic receptor involved in brachydactyly syndromes A1, A2 and D and acromesomelic dysplasia 3 (only the latter being an autosomal recessive condition). CONCLUSION: This report highlights that CBHV serves as a vital diagnostic indicator of FOP and affected infants should be considered and investigated for FOP, including precautionary management whilst awaiting genetic studies. The second educational aspect is that CBHV may not represent a generalised skeletal disorder, or one much less significant than FOP. Receptor-ligand BMP and Activins mediated interactions are instrumental in the intricate embryology of the great toe. Recognition of non-FOP conditions caused by alterations in different genes are likely to increase with new genomic technology and large gene panels, enhancing understanding of bone signaling pathways.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Hallux Valgus , Miosite Ossificante , Humanos , Miosite Ossificante/genética , Feminino , Hallux Valgus/genética , Hallux Valgus/diagnóstico por imagem , Lactente , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética
2.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
3.
Bone ; 175: 116860, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524292

RESUMO

Acromesomelic dysplasia Grebe type (AMD Grebe type) is an autosomal recessive trait characterized by short stature, shortened limbs and malformations of the hands and feet. It is caused by variants in the growth differentiation factor 5 (GDF5) or, in rare cases, its receptor, the bone morphogenetic protein receptor-1B (BMPR1B). Here, we report a novel homozygous BMPR1B variant causing AMD Grebe type in a consanguineous Moroccan family with two affected sibs from BRO Biobank. Remarkably, the affected individuals showed additional features including bilateral simian creases, lumbar hyperlordosis, as well as lower limb length inequality and dislocated hips in one of them, which were never reported previously for AMD Grebe type patients. The identified novel BMPR1B variant (c.1201C>T, p.R401*) is predicted to result in loss of function of the BMPR1B protein either by nonsense-mediated mRNA decay or production of a truncated BMPR1B protein. Thus, these findings expand the phenotypic and mutational spectrum of AMD, and may improve the diagnosis of AMD and enable appropriate genetic counselling to be offered to patients.


Assuntos
Osteocondrodisplasias , Humanos , Consanguinidade , Linhagem , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética
4.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373155

RESUMO

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide. Even with advances in therapy, CRC mortality remains high. Therefore, there is an urgent need to develop effective therapeutics for CRC. PCTAIRE protein kinase 1 (PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family, and the function of PCTK1 in CRC is poorly understood. In this study, we found that patients with elevated PCTK1 levels had a better overall survival rate in CRC based on the TCGA dataset. Functional analysis also showed that PCTK1 suppressed cancer stemness and cell proliferation by using PCTK1 knockdown (PCTK1-KD) or knockout (PCTK1-KO) and PCTK1 overexpression (PCTK1-over) CRC cell lines. Furthermore, overexpression of PCTK1 decreased xenograft tumor growth and knockout of PCTK1 significantly increased in vivo tumor growth. Moreover, knockout of PCTK1 was observed to increase the resistance of CRC cells to both irinotecan (CPT-11) alone and in combination with 5-fluorouracil (5-FU). Additionally, the fold change of the anti-apoptotic molecules (Bcl-2 and Bcl-xL) and the proapoptotic molecules (Bax, c-PARP, p53, and c-caspase3) was reflected in the chemoresistance of PCTK1-KO CRC cells. PCTK1 signaling in the regulation of cancer progression and chemoresponse was analyzed using RNA sequencing and gene set enrichment analysis (GSEA). Furthermore, PCTK1 and Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) in CRC tumors were negatively correlated in CRC patients from the Timer2.0 and cBioPortal database. We also found that BMPR1B was negatively correlated with PCTK1 in CRC cells, and BMPR1B expression was upregulated in PCTK1-KO cells and xenograft tumor tissues. Finally, BMPR1B-KD partially reversed cell proliferation, cancer stemness, and chemoresistance in PCTK1-KO cells. Moreover, the nuclear translocation of Smad1/5/8, a downstream molecule of BMPR1B, was increased in PCTK1-KO cells. Pharmacological inhibition of Smad1/5/8 also suppressed the malignant progression of CRC. Taken together, our results indicated that PCTK1 suppresses proliferation and cancer stemness and increases the chemoresponse of CRC through the BMPR1B-Smad1/5/8 signaling pathway.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
5.
BMC Genomics ; 23(1): 799, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463109

RESUMO

BACKGROUND: BMPR1B (Bone morphogenetic protein receptor type-1B) is a receptor in the bone morphogenetic protein (BMP) family and has been identified as a candidate gene for reproductive traits in pigs. Our previous study in Taihu pigs found a specific estrogen response element (ERE) in the first intron of the BMPR1B gene that is associated with the number born alive trait. However, little is known about the mechanism by which the ERE regulates the expression of BMPR1B in the endometrium. RESULTS: Here, a 15-bp InDel (insertion/deletion) (AGCCAGAAAGGAGGA) was identified as a unique variation in Taihu pigs, and was shown to be responsible for the binding of the type I receptor of estrogen (ESR1) to the ERE using dual-luciferase assays. Four BMPR1B transcripts (T1, T2, T3, and T4) were identified by 5' RACE in endometrial tissue. Expression of T3 and T4 in the endometrium of Meishan pigs was significantly higher than in Duroc pigs during pregnancy. Luciferase assays showed that three distinct BMPR1B promoters may drive expression of T1, T3, and T4. Interestingly, ERE-mediated enhancement of T4 promoter activity significantly increased expression of Transcript T4 in the endometrium of Taihu pigs (P < 0.05). In contrast, the ERE inhibited activity of the T3 promoter and decreased expression of the T3 transcript in the Duroc background (P < 0.05). In summary, we identified a 15-bp InDel in the Taihu ERE that can be used as a molecular marker for the number born alive trait, characterized the 5' untranslated regions (UTRs) of BMPR1B transcripts in the endometrium, and determined how the transcripts are processed by alternative splicing events. CONCLUSIONS: Our results provide a foundation for understanding the transcriptional regulation of BMPR1B and its contributions to the unique breeding prolificacy characteristics of Taihu pigs.


Assuntos
Endométrio , Mutação INDEL , Feminino , Gravidez , Suínos/genética , Animais , Íntrons , Regiões 5' não Traduzidas , Estrogênios
6.
Cell Cycle ; 21(15): 1599-1618, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35404759

RESUMO

Endometrial carcinoma (EC) originates from the endometrium and is one of the most common tumors in female patients, and its incidence has continued to increase in recent decades. LncRNAs are involved in the pathogenesis and metastasis of a variety of malignant tumors, which indicates that lncRNAs can be used as tumor diagnostic markers and potential therapeutic targets. In this study, we analyzed the RNA transcripts of EC cells from The Cancer Genome Atlas (TCGA) and first reported a novel lncRNA, BMPR1B-AS1, that was more highly expressed in endometrial cancer tissues than in adjacent tissues, and BMPR1B-AS1 could promote endometrial cancer cell proliferation and metastasis. Bioinformatics prediction and experimental results both suggested that BMPR1B-AS1 could modulate the malignant behaviors of endometrial cancer cell lines by sponging miR-7-2-3p to modulate DCLK1, and a DCLK1 inhibitor blocked the activation of the PI3K/Akt/NF-κB signaling pathway. Collectively, this study suggests that the BMPR1B-AS1/miR-7-2-3p/DCLK1 axis contributes to the proliferation and metastasis of endometrial cancer cells via the PI3K/Akt/NF-κB pathway.


Assuntos
Neoplasias do Endométrio , MicroRNAs , RNA Longo não Codificante , Biomarcadores Tumorais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quinases Semelhantes a Duplacortina , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Cell Tissue Res ; 388(2): 301-312, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35192037

RESUMO

N6-methyladenosine (m6A) modification plays a crucial role in the progression of osteoporosis (OP). The study aimed to explore the effects of methyltransferase-like 3 (METTL3) in OP. The levels of METTL3, LINC00657, miR-144-3p and BMPR1B were detected using qPCR. Osteogenesis was assessed using alizarin red and alkaline phosphatase (ALP) staining assays. The protein expression of Bglap, Runx2 and Col1a1 was measured by western blot. The targets of LINC00657 and miR-144-3p were screened by bioinformatic analysis. The interaction between miR-144-3p and LINC00657 or BMPR1B was analyzed by dual-luciferase reporter assay and RNA pull-down assay. The results showed that METTL3 was downregulated in OP. METTL3 mediated m6A methylation of LINC00657 to promote the development of osteogenesis. Further study indicated that LINC00657 functioned as a ceRNA to upregulate BMPR1B via sponging miR-144-3p. Additionally, BMPR1B knockdown alleviated the effects of METTL3 on osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Taken together, METTL3 facilitated osteogenic differentiation of BMSCs via the LINC00657/miR-144-3p/BMPR1B axis. Our findings may provide a novel insight of m6A methylation in the development of OP.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo
8.
Zygote ; 30(1): 65-71, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33966679

RESUMO

Regulation of the transforming growth factor beta (TGFß) superfamily by gonadotrophins in swine follicular cells is not fully understood. This study evaluated the expression of steroidogenic enzymes and members of the TGFß superfamily in prepubertal gilts allocated to three treatments: 1200 IU eCG at D -3 (eCG); 1200 IU eCG at D -6 plus 500 IU hCG at D -3 (eCG + hCG); and the control, composed of untreated gilts. Blood samples and ovaries were collected at slaughter (D0) and follicular cells were recovered thereafter. Relative gene expression was determined by real-time PCR. Serum progesterone levels were greater in the eCG + hCG group compared with the other groups (P < 0.01). No differences were observed in the expression of BMP15, BMPR1A, BMPR2, FSHR, GDF9, LHCGR and TGFBR1 (P > 0.05). Gilts from the eCG group presented numerically greater mean expression of CYP11A1 mRNA than in the control group that approached statistical significance (P = 0.08) and greater expression of CYP19A1 than in both the eCG and the control groups (P < 0.05). Expression of BMPR1B was lower in the eCG + hCG treatment group compared with the control (P < 0.05). In conclusion, eCG treatment increased the relative expression of steroidogenic enzymes, whereas treatment with eCG + hCG increased serum progesterone levels. Although most of the evaluated TGFß members were not regulated after gonadotrophin treatment, the downregulation of BMPR1B observed after treatment with eCG + hCG and suggests a role in luteinization regulation.


Assuntos
Gonadotropina Coriônica , Folículo Ovariano/citologia , Proteínas da Superfamília de TGF-beta/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Progesterona , Suínos
9.
Front Oncol ; 11: 678474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026654

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a significant cause of patient morbidity. The exactly pathobiological features of this condition has yet to be completely elucidated. METHODS: Breast cancer data obtained from The Cancer Genome Atlas (TCGA) database were evaluated for lncRNA SNHG6 expression. Normal human breast epithelial cell line (MCF-10A) and other breast cancer cell lines (BT-549, MDA-MB-231, Hs 578t, ZR-75-30, SK-BR-3, MCF-7) were also assessed for lncRNA SNHG6 expressions. Cellular proliferative ability was evaluated with colony formation and CCK-8 assays. The ability of cells to migrate was scrutinized with the wound healing and Boyden chamber cell migration assays. qRT-PCR enabled for detection of lncRNA SNHG6, miR-125b-5p and BMPR1B mRNA expressions. Protein BMPR1B expressions were further assessed using Western Blotting. Direct binding sites between transcripts were determined using dual-luciferase reporter assays. We also constructed a xenograft mouse model to further dissect the vivo implications of lncRNA SNHG6. Ki-67 and c-Caspase-3 expressions were detected using immunohistochemistry staining. RESULTS: Breast cancer cell lines demonstrated higher lncRNA SNHG6 expressions, particularly TNBC cell lines, in contrast to normal breast epithelial cell lines. This finding coincided with those noted on analysis of TCGA breast cancer data. lncRNA SNHG6 knockdown inhibited TNBC cell proliferation, migration, while promoted cell apoptosis. Furthermore, suppressed lncRNA SNHG6 expressions resulted in lower tumor weights and volumes in a xenograft mouse model, as evidenced by Ki-67 and c-Caspase-3 expression profiles in tumor tissues. miR-125b-5p and lncRNA SNHG6/BMPR1B both possessed direct binding sites for each other which was validated utilizing a dual-luciferase reporter assay. Decreasing lncRNA SNHG6 expression in TNBC cells upregulated miR-125b-5p expression. Another side, inhibiting miR-125b-5p upregulated BMPR1B expression in these cells. Moreover, knocking down lncRNA SNHG6 downregulated BMPR1B expression in TNBC cells, and the finding was rescued in cells which were exposed to miR-125b-5p inhibitor. Downregulating miR-125b-5p mitigated the effect of suppressing lncRNA SNHG6 on TNBC cell proliferation, migration, and apoptosis. CONCLUSION: Downregulation of lncRNA SNHG6 could inhibit TNBC cell proliferative, migratory capabilities and promote apoptosis capability, likely through modulation of the miR-125b-5p/BMPR1B axis. This axis may be targeted in formulating new therapies for TNBC.

10.
Biol. Res ; 53: 24, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1124209

RESUMO

BACKGROUND: BMPR-1B is part of the transforming growth factor ß super family and plays a pivotal role in ewe litter size. Functional loss of exon-8 mutations in the BMPR-1B gene (namely the FecB gene) can increase both the ewe ovulation rate and litter size. RESULTS: This study constructed a eukaryotic expression system, prepared a monoclonal antibody, and characterized BMPR-1B/FecB protein-protein interactions (PPIs). Using Co-immunoprecipitation coupled to mass spectrometry (Co-IP/MS), 23 proteins were identified that specifically interact with FecB in ovary extracts of ewes. Bioinformatics analysis of selected PPIs demonstrated that FecB associated with several other BMPs, primarily via signal transduction in the ovary. FecB and its associated interaction proteins enriched the reproduction process via BMP2 and BMP4 pathways. Signal transduction was identified via Smads proteins and TGF-beta signaling pathway by analyzing the biological processes and pathways. Moreover, other target proteins (GDF5, GDF9, RhoD, and HSP 10) that interact with FecB and that are related to ovulation and litter size in ewes were identified. CONCLUSIONS: In summary, this research identified a novel pathway and insight to explore the PPi network of BMPR-1B.


Assuntos
Animais , Feminino , Ovário/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Eucariotos/genética , Mapas de Interação de Proteínas/genética , Espectrometria de Massas , Polimorfismo de Fragmento de Restrição , Ovinos , Transdução de Sinais , Reação em Cadeia da Polimerase , Biologia Computacional , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Eucariotos/metabolismo , Genótipo , Mutação
11.
Artigo em Inglês | MEDLINE | ID: mdl-30922947

RESUMO

The reproductive capacity (egg size and egg number) of most of oviparous animals, including the Asian yellow pond turtle (Mauremys mutica), is constrained by the maternal age and body size, but the mechanism determining the maternal reproductive ability remains unclear. To disclose how maternal age and size affect reproductive ability of M. mutica, we first identified the full-length cDNAs from estrogen receptor 1 (ESR1), bone morphogenetic protein receptor 1B (BMPR1B), and forkhead box L2 (FOXL2). The ESR1 open reading frame (ORF) was 1, 767 bp encoding 588 amino acids. For BMPR1B, the ORF was 1599 bp encoding 532 amino acids, and an ORF of 906 bp encoding 301 amino acids was identified in FOXL2. The effects of maternal age and size on the expression of ESR1, BMPR1B, and FOXL2 in the ovary, brain, and uterus showed that ESR1 expression in large females was significantly lower than that in small females in the brain, but body size did not affect ESR1 expression in the ovary. The expression of ESR1 was significantly different in the different age groups and size groups, and there was interaction detected between maternal age and body size. However, BMPR1B expression in the ovary, brain, and uterus was independent of maternal age and size. In addition, we found different FOXL2 expression patterns between the brain and uterus, while detected interaction of female age and size in the brain and ovary. Our results imply the complexity and diversity of maternal age and size in regulating the expression of genes related to reproduction. These results provide more information for the maternal effects on the reproduction-related gene expression.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Receptor alfa de Estrogênio , Proteína Forkhead Box L2 , Regulação da Expressão Gênica/fisiologia , Proteínas de Répteis , Tartarugas , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Clonagem Molecular , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/genética , Feminino , Proteína Forkhead Box L2/biossíntese , Proteína Forkhead Box L2/genética , Masculino , Especificidade de Órgãos/fisiologia , Reprodução/fisiologia , Proteínas de Répteis/biossíntese , Proteínas de Répteis/genética , Tartarugas/genética , Tartarugas/metabolismo
12.
DNA Cell Biol ; 37(11): 878-887, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30260685

RESUMO

The intronic microRNA, miR-125b, plays a vital role in promyelocytic and hematopoietic stem cells, and in the development and apoptosis of cancer cells. In this study, we showed that miR-125b regulates granulosa cell (GC) apoptosis in the yak ovary. Bioinformatic analyses and luciferase reporter assays demonstrated that bone morphogenetic protein receptor type 1B (BMPR1B) is an miR-125b target. miR-125b overexpression induced apoptosis in yak GC, and affected the mRNA and protein expression of BMPR1B and the ratio of Bcl2/Bax. Silencing of miR-125b decreased the rate of yak GC apoptosis and increased the ratio of Bcl2/Bax. In addition, the effects of an miR-125b inhibitor were overturned by cotransfection with siRNA-BMPR1B2 (siRNA-299) in yak GC. Together, these results demonstrated that miR-125b regulates GC apoptosis in the yak ovary by targeting BMPR1B.


Assuntos
Apoptose/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Células da Granulosa/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Sequência de Bases , Sítios de Ligação , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Bovinos , Feminino , Regulação da Expressão Gênica , Células da Granulosa/citologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Int J Fertil Steril ; 12(1): 51-55, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29334207

RESUMO

BACKGROUND: The presence of different missense mutations in sheep breeds have shown that the bone morphogenetic protein receptor 1B (BMPR1B), bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes play a vital role in ovulation rate and prolificacy in ewes. Therefore, the present study aims to investigate BMPR1B, BMP15 and GDF9 gene mutations in prolific ewes of Iranian fat-tailed Lori-Bakhtiari sheep. MATERIALS AND METHODS: In the present experimental study, genomic DNA was extracted from whole blood of 10 prolific Lori-Bakhtiari ewes with at least two twinning records in the first four parities to identify point mutations of the BMPR1B, BMP15 and GDF9 genes, using DNA sequencing. RESULTS: The results obtained from DNA sequencing showed a new synonymous mutation (g.66496G>A) in exon 8 of the BMPR1B gene, without any amino acid change. Sequencing of the BMP15 gene revealed a deletion of 3 bp (g.656_658delTTC) in exon 1, leading to an amino acid deletion (p.Leu19del). Four single nucleotide polymorphisms (G1:g.2118G>A, G2:g.3451T>C, G3:g.3457A>G and G4:g.3701G>A), were detected in exons 1 and 2 of the GDF9 gene, two of which caused amino acid substitutions (G1: p.87Arg>His and G4: p.241Glu>Lys). These amino acid alterations are proposed to have a benign impact on structure and function of the GDF9 polypeptide sequence. CONCLUSION: Three major prolificacy genes (BMPR1B, BMP15 and GDF9) were polymorphic in Lori-Bakhtiari sheep, although none of the major causative mutation was detected in this sheep type. Further studies using high throughput methods such as genome-wide association study (GWAS) and evaluation of other candidate genes are necessary in the future.

14.
Ann Hum Genet ; 82(3): 129-134, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29322508

RESUMO

Acromesomelic dysplasia is genetically heterogeneous group of skeletal disorders characterized by short stature and acromelia and mesomelia of limbs. Acromesomelic dysplasia segregates in an autosomal recessive pattern and is caused by biallelic sequence variants in three genes (NPR2, GDF5, and BMPR1B). A consanguineous family of Pakistani origin segregating a subtype of acromesomelic dysplasia called Hunter-Thompson was clinically and genetically evaluated. Genotyping of microsatellite markers and linkage analysis revealed a 7.78 Mb homozygous region on chromosome 4q22.3, which harbors BMPR1B. Sequence analysis of the gene revealed a novel homozygous missense variant (c.1190T > G, p.Met397Arg) that segregates with the disease phenotype within the family and produced a Logarithm of odds (LOD) score of 3.9 with the disease phenotype. This study reports on the first familial case of acromesomelic dysplasia Hunter-Thompson type. It is also the first report of BMPR1B underlying the etiology of acromesomelic dysplasia Hunter-Thompson type.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Nanismo/genética , Osteocondrodisplasias/genética , Adulto , Consanguinidade , Feminino , Ligação Genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Paquistão , Linhagem
15.
Cancer Invest ; 35(9): 601-609, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-28990808

RESUMO

Activation of proteinase-activated receptor 2 (PAR2) promotes cell migration in cancers, but the exact mechanism underlying this process remains largely unknown. Here we report that activation of PAR2 reduced miR-205 expression, whereas inhibition of miR-205 promoted cell migration in cancer cells. Overexpression of miR-205 blocked PAR2-mediated stimulation of cell migration. BMPR1B was identified as a downstream target gene of miR-205. In colorectal carcinoma specimens from patients, the level of PAR2 was negatively correlated with that of miR-205, but it was positively associated with BMPR1B expression. Taken together, our findings indicate that PAR2 signaling promotes cancer cell migration through miR-205/BMPR1B pathway in human colorectal carcinoma.


Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HT29 , Humanos , MicroRNAs/genética , Receptor PAR-2 , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
16.
Cell Physiol Biochem ; 41(2): 530-542, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214897

RESUMO

BACKGROUND/AIMS: Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in bone regeneration and bone reparation. This complex process is regulated precisely and firmly by specific factors. Recent studies have demonstrated that miR-125b regulates osteogenic differentiation, but little is known about the molecular mechanisms of this regulation. Furthermore, how miR-125b regulates the osteogenic differentiation of MSCs still needs elucidation. METHODS: In the present study, human bone marrow-derived mesenchymal stem cells (hBMSCs) were isolated and induced to osteoblasts with miR-125b inhibition or overexpression. qRT-PCR and western blot analysis were used to detect the expression of osteogenic marker genes and proteins. Alkaline phosphatase (ALP) and Alizarin Red (ARS) staining were performed to evaluate the osteoblast phenotype. TargetScan, PicTar and miRanda database were used to predict the target gene of miR-125b. Dual luciferase reporter assay and RNA interference were performed to verify the target gene. Micro-CT imaging and histochemical staining were used to investigate the bone defect repair capacity of miR-125b in vivo. RESULTS: We observed that miR-125b was expressed at a low level during the osteogenic differentiation of hBMSCs. Then, we found that osteogenic marker genes were negatively regulated by miR-125b during the course of osteogenic differentiation, suggesting that miR-125b down regulation plays an important role in the process of osteogenic differentiation. Bioinformatics approaches using miRNA target prediction algorithms indicated that the bone morphogenetic protein type Ib receptor (BMPR1b) is a potential target of miR-125b. The results of the dual luciferase reporter assay indicated that miR-125b binds to the 3'-UTR of the BMPR1b gene. We observed that knockdown of BMPR1b by siRNA inhibited the osteogenic differentiation of hBMSCs. Furthermore, by co-transfecting cells with an miR-125b inhibitor and si-BMPR1b, we found that the osteogenic capacity of the cells transfected with miR-125b inhibitor was blocked upon knockdown of BMPR1b. In vivo, demineralized bone matrix (DBM) was composited with hBMSCs as a scaffold to repair segmental femoral defects. By inhibiting the expression of miR-125b, hBMSCs showed a better capacity to repair bone defects. CONCLUSIONS: Taken together, our study demonstrated that miR-125b regulated the osteogenic differentiation of hBMSCs by targeting BMPR1b and that inhibiting miR-125b expression could enhance the capacity of bone defect repair in vivo.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , MicroRNAs/metabolismo , Animais , Antagomirs/metabolismo , Sequência de Bases , Densidade Óssea , Doenças Ósseas/diagnóstico por imagem , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Células da Medula Óssea/citologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Regeneração Óssea , Diferenciação Celular , Células Cultivadas , Fêmur/diagnóstico por imagem , Fêmur/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência
17.
Artigo em Chinês | MEDLINE | ID: mdl-29871275

RESUMO

Objective:To explore the relationship between MTHFR,BMPR1B and TYMS polymorphism and congenitial microtia in Chinese Han population.Method:A total of 180 microtia patients and 141 healthy participants were enrolled in this study.The genotyping of MTHFR rs4846049, BMPR1B rs1434536 and TYMS rs2790 of the participants were examined with multiple PCR. Frequencies and allele distribution of MTHFR rs4846049,BMPR1B rs1434536 and TYMS rs2790 between cases and control were analyzed with Chi-square test. Result:The genotype frequency distribution of TYMS rs27901 polymorphism was significantly different between two groups(P<0.05).Furthermore, gender stratified analysis showed that TYMS rs2790 polymorphism mainly increase the risks of congenitial microtia in male(P<0.05).Compared with AA genotype,the mircotia risks of subjects with AG GG AG+GG raised to 1.93, 3.23 and 2.10 times,respectively(95%CI:1.07-3.48、1.12-9.33 and 1.20-3.68).However,there was no relationship between MTHFR rs4846049, BMPR1B rs1434536 and microtia. Conclusion:The TYMS rs2790 polymorphism may be a risk factor of microtia in male.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Microtia Congênita/genética , Genótipo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Timidilato Sintase/genética , Povo Asiático , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo Genético
18.
Mol Cell Oncol ; 3(3): e1026527, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27314065

RESUMO

Chronic exposure of epithelial cells to high levels of bone morphogenetic protein 2 (BMP2) has recently been demonstrated to initiate stem cell transformation toward a luminal tumor-like phenotype through a BMP2-BMPR1B-dependent mechanism. Carcinogen-driven deregulation of the stem cell niche could therefore represent a driving force to promote transformation and dictate the ultimate breast tumor subtype.

19.
Eur J Med Genet ; 59(4): 198-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926249

RESUMO

Acromesomelic dysplasia is a type of skeletal malformation affecting distal and middle segments of the extremities. It occurs in both isolated (non-syndromic) and syndromic forms. In later case, it shows association with cardiac, respiratory, neurological and genital abnormalities. Acromesomelic dysplasia segregates in autosomal recessive mode. Mutations in three genes (GDF5, NPR2, BMPR1B) have been reported to cause different forms of acromesomelic dysplasia. In the present review, we have discussed clinical spectrum, genetics and signalopathies of isolated acromesomelic dysplasias.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Nanismo/genética , Fator 5 de Diferenciação de Crescimento/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Receptores do Fator Natriurético Atrial/genética , Consanguinidade , Nanismo/fisiopatologia , Humanos , Anormalidades Musculoesqueléticas/fisiopatologia , Mutação , Osteocondrodisplasias/fisiopatologia , Linhagem , Fenótipo
20.
Int J Oral Maxillofac Surg ; 44(4): 535-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25468630

RESUMO

This work focused on the process of bone repair of defects in standardized calvaria of Wistar rats treated with biphasic calcium phosphate (BCP), mineral trioxide aggregate (MTA), or a combination of the two. Eighty Wistar rats were divided into four treatment groups and were examined at 2 and 8 weeks. A surgical defect was created in the calvaria using a 6-mm diameter trephine drill. The cavity was treated with BCP, MTA, or BCP+MTA; untreated rats with clot formation served as controls. Samples were evaluated histologically and by immunohistochemical staining for areas of new osteoid tissue and new bone tissue, as well as the percentage of labelled cells using anti-bone morphogenetic protein receptor type 1B (anti-BMPR1B) antibodies. Statistically significant differences were found for all dependent variables (area of new osteoid tissue, area of new bone, and percentage immunostaining) by group (P<0.0001) and time (P<0.0001), and for the interaction of the two (P<0.0001). The MTA group at 8 weeks showed the highest amount of osteoid tissue. The same group also exhibited the highest amount of bone tissue formation. The 2-week MTA samples and 2-week BCP+MTA samples exhibited the highest percentages of stained cells. The best results in terms of the area of osteoid and bone tissue formation and the percentage of BMPR1B were observed for the MTA group, confirming that the combination of BCP+MTA does not result in a significant improvement.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Hidroxiapatitas/farmacologia , Osteogênese/efeitos dos fármacos , Óxidos/farmacologia , Silicatos/farmacologia , Crânio/cirurgia , Cicatrização/efeitos dos fármacos , Animais , Combinação de Medicamentos , Imuno-Histoquímica , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA