Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Diagnostics (Basel) ; 14(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125464

RESUMO

Osteomyelitis (OM) is a major challenge in orthopedic surgery. The diagnosis of OM is based on imaging and laboratory tests, but it still presents some limitations. Therefore, a deeper comprehension of the pathogenetic mechanisms could enhance diagnostic and treatment approaches. OM pathogenesis is based on an inflammatory response to pathogen infection, leading to bone loss. The present study aims to investigate the potential diagnostic role of a panel of osteoimmunological serum biomarkers in the clinical approach to OM. The focus is on the emerging infection biomarker sCD14-ST, along with osteoimmunological and inflammatory serum biomarkers, to define a comprehensive biomarker panel for a multifaced approach to OM. The results, to our knowledge, demonstrate for the first time the diagnostic and early prognostic role of sCD14-ST in OM patients, suggesting that this biomarker could address the limitations of current laboratory tests, such as traditional inflammatory markers, in diagnosing OM. In addition, the study highlights a relevant diagnostic role of SuPAR, the chemokine CCL2, the anti-inflammatory cytokine IL-10, the Wnt inhibitors DKK-1 and Sclerostin, and the RANKL/OPG ratio. Moreover, CCL2 and SuPAR also exhibited early prognostic value.

2.
Heliyon ; 10(13): e33740, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39055804

RESUMO

Background & aims: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic steatosis, for which there is currently no effective treatment. ACY-1215 is a selective inhibitor of histone deacetylation 6, which has shown therapeutic potential in many tumors, as well as acute liver injury. However, no research about ACY-1215 on NAFLD has been published. Therefore, our study aims to explore the role and mechanism of ACY-1215 in the experimental model of NAFLD, to propose a new treatment strategy for NAFLD. Methods: We established cell and animal models of NAFLD and verified the effect of ACY-1215 on NAFLD. The mechanism of ACY-1215 on NAFLD was preliminarily explored through TMT relative quantitative proteomics, and then we verify the mechanism discovered in the experimental model of NAFLD. Results: ACY-1215 can reduce lipid aggregation, IL-1ß, and TNF α mRNA levels in liver cells in vitro. ACY-1215 can reduce the weight gain and steatosis in the liver of the NAFLD mouse model, alleviate the deterioration of liver function, and reduce IL-1ßs and TNF α mRNA levels in hepatocytes. TMT relative quantitative proteomics found that ACY-1215 decreased the expression of CD14 in hepatocytes. It was found that ACY-1215 can inhibit the activation level of CD14/TLR4/MyD88/MAPK/NFκB pathway in the NAFLD experimental model. Conclusions: ACY-1215 has a protective effect on the cellular model of NAFLD induced by fatty acids and lipopolysaccharide, as well as the C57BL/6J mouse model induced by a high-fat diet. ACY-1215 may play a protective role by inhibiting CD14/TLR4/MyD88/MAPK/NFκB signal pathway.

3.
Int Immunopharmacol ; 138: 112584, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944948

RESUMO

Heat shock proteins are a widely distributed group of proteins. It is constitutively expressed in almost all organisms and shows little variation throughout evolution. Previously, HSPs, particularly Hsp70, were recognized as molecular chaperones that aid in the proper three-dimensional folding of newly synthesized polypeptides in cells. Recently, researchers have focused on the potential induction of immune cells, including macrophages, antigen-specific CD8+ cytotoxic T cells, and PBMCs. It induces the expression of CC chemokines such as MIP-1α and RANTES, which are responsible for the chemotactic movement and migration of immune cells at the site of infection to neutralize foreign particles in vivo and in vitro in several cell lines but their effect on tumor-associated macrophages is still not known. These cytokines are also known to influence the movement of several immune cells, including CD8+ cytotoxic T cells, toward inflammatory sites. Therefore, the effect of tumor-derived autologous Hsp70 on the expression of MIP-lα and RANTES in tumor-associated macrophages (TAMs) was investigated. Our results indicated that Hsp70 treatment-induced MIP-lα and RANTES expression was significantly greater in TAMs than in NMOs. According to the literature, the CC chemokine shares the same receptor, CCR5, as HIV does for their action, and therefore could provide better completion to the virus for ligand binding. Furthermore, Hsp70-preactivated TAMs induced increased IL-2 and IFN-γ expression in T cells during coculture for 48 h and upregulated the antitumor immune response of the host. Therefore, the outcome of our study could be useful for developing a better approach to restricting the growth and progression of tumors.


Assuntos
Proteínas de Choque Térmico HSP70 , Linfócitos T Citotóxicos , Macrófagos Associados a Tumor , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Quimiocina CCL5/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Quimiocinas CC/metabolismo , Quimiocinas CC/imunologia , Ativação de Macrófagos
4.
Vet Res ; 55(1): 76, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867337

RESUMO

Bovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E. coli motif recognized by MEC through its interaction with the TLR4 receptor and the CD14 co-receptor. Previous studies have highlighted the role of soluble CD14 (sCD14) in the efficient recognition of LPS molecules possessing a full-length O-antigen (LPSS). We demonstrate here that MEC are able to secrete CD14 and are likely to contribute to the presence of sCD14 in milk. We then investigated how sCD14 modulates and is required for the response of MEC to LPSS. This study highlights the key role of sCD14 for the full activation of the Myd88-independent pathway by LPSS. We also identified several lncRNA that are activated in MEC in response to LPS, including one lncRNA showing homologies with the mir-99a-let-7c gene (MIR99AHG). Altogether, our results show that a full response to LPS by mammary epithelial cells requires sCD14 and provide detailed information on how milk sCD14 can contribute to an efficient recognition of LPS from coliform pathogens.


Assuntos
Células Epiteliais , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Glândulas Mamárias Animais , Animais , Receptores de Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/genética , Bovinos , Células Epiteliais/metabolismo , Lipopolissacarídeos/farmacologia , Feminino , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/imunologia , Mastite Bovina/metabolismo , Leite
5.
Biomedicines ; 12(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790920

RESUMO

PD-(L)1 inhibitors are part of the treatment strategy for non-small cell lung cancer (NSCLC) although its efficacy is limited to certain patients. Our study aimed to identify patients who might benefit from anti-PD-(L)1 inhibitors by analyzing the PD-L1 expression on circulating leukocytes and its evolution during treatment. One hundred thirteen NSCLC patients, according to their radiological response after 10-12 weeks of treatment, were classified into responders, stable, and progressive disease. Percentages of circulating PD-L1+ leukocytes, PD-L1+ platelets (PLTs), and leukocyte-PLT complexes were assessed using flow cytometry, and plasma concentrations of soluble immunomodulatory factors were quantified by ELISA. Responders exhibited significantly higher pre-treatment percentages of PD-L1+ neutrophils, PD-L1+ CD14+ cells, and PD-L1+ PLTs than progressors. The percentages of these populations decreased in responders post-treatment, contrasting with stables and progressors. PLTs notably contributed to PD-L1 expression in CD14+ cells and neutrophils. Plasma cytokine analysis revealed baseline differences only in IL-17 concentration among groups, whereas network analyses highlighted distinct association patterns between plasma molecules and PD-L1+ leukocytes after 10-12 weeks of treatment. Our findings suggest that pre-treatment assessment of circulating PD-L1+ neutrophils, PD-L1+ CD14+ cells, and PD-L1+ PLTs may be helpful in identifying NSCLC patients who are potential candidates for anti-PD-(L)1 therapy.

6.
Chin J Integr Med ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816635

RESUMO

OBJECTIVE: To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism. METHODS: The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1ß in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS). RESULTS: UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05). CONCLUSIONS: BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.

7.
Indian J Hematol Blood Transfus ; 40(2): 340-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708156

RESUMO

It is aimed to determine expression of programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), CD163 and CD14 in diffuse large B-cell lymphomas (DLBCL), and whether these markers may predict prognosis in DLBCL cases. A total of 52 nodal DLBCL, NOS cases with no known extranodal involvement at the time of diagnosis were evaluated. PD-1, PD-L1, CD163, and CD14 were studied by immunohistochemistry. The relationships between the results and clinical and laboratory prognostic markers were investigated. It was observed that patients with PD-1 expression < 5 positive cells/HPF had worse overall survival. No significant relationship was found between survival and PD-L1, CD163 and CD14 expressions. In addition, cases that are > 60 years of age, that have Eastern Cooperative Oncology Group (ECOG) performance score ≥ 2, stage IV disease, high International Prognostic Index score score (≥ 3), elevation of LDH, low albumin level, low hemoglobin level, low peripheral blood lymphocyte count, high peripheral blood neutrophil/lymphocyte ratio, high peripheral blood platelet/lymphocyte ratio were found to have worse overall survival. It was concluded that in patients with low number of PD-1 positive tumor-infiltrating lymphocytes have low survival rates and therefore PD-1 expression may be useful in indicating prognosis.

8.
J Virol ; 98(5): e0036324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661384

RESUMO

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Vírion , Humanos , Quimiocina CCL5/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vírion/metabolismo
9.
Biomedicines ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672131

RESUMO

Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation in PsA.

10.
Front Mol Biosci ; 11: 1362955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572445

RESUMO

Introduction: Mitochondrial dysfunction may be one of the causes of inflammatory activation of monocytes and macrophages, which leads to excessive secretion of inflammatory mediators and the development of chronic inflammation. Aims: The study was aimed to evaluate the secretion of inflammatory cytokine tumor necrosis factor-α (TNF-α) in the primary culture of monocytes, and to analyze its relationship with the number of mitochondrial DNA (mtDNA) copies in the blood of patients with coronary heart disease (CHD) and obesity. Materials and methods: 108 patients with obesity and concomitant CHD and a control group of 25 participants were included in the study. CD14+ monocytes were isolated by a standard method in a ficoll-urographin gradient, followed by separation using magnetic particles. The number of mtDNA copies was estimated using qPCR. Results: It was demonstrated that the number of mtDNA copies was significantly increased in groups of patients with CHD and obesity + CHD in comparison with control group. mtDNA copy number positively correlated with basal and LPS-stimulated TNF-α secretion, the most significant correlation was found in the group of patients with CHD and obesity. Conclusion: Thus, the change in mtDNA copy number in CD14+ monocytes which indicates the presence of mitochondrial dysfunction, confirm the direct involvement of mitochondria in the violation of the inflammatory response of monocytes revealed in this study as an increased secretion of inflammatory cytokine TNF-α.

11.
Eur J Immunol ; 54(6): e2350891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509863

RESUMO

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.


Assuntos
Neoplasias Colorretais , Células Dendríticas , Dinoprostona , Interleucina-6 , Organoides , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Organoides/imunologia , Organoides/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Interleucina-6/imunologia , Técnicas de Cocultura , Fenótipo , Plasticidade Celular
12.
Artigo em Inglês | MEDLINE | ID: mdl-38459706

RESUMO

Hepatitis B virus (HBV), a vaccine-avoidable infection, is a health concern worldwide, leading to liver disorders such as acute self-constraint and chronic hepatitis, liver failure, hepatic cirrhosis, and even hepatocellular carcinoma if untreated. 'Immunogeneticprofiling', genetic variations of the pro- and anti-inflammatory cytokines responsible for regulating the immune responses, cause person-to-person differences and impact the clinical manifestation of the disease. The current experimental-bioinformatics research was conducted to examine whether promoteric IL-18-rs187238 C > G and -rs1946518 T > G and intronic CD14-rs2569190 A > G variations are associated with chronic HBV. A total of 400 individuals (200 in each case and control group) participated in the study and were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The data was also assessed bioinformatics-wise for conservation, genomic transcription and splicing, and protein interactions. Findings proposed that unlike the IL-18-rs1946518 T > G and CD14-rs2569190 A > G, the IL-18-rs187238 C > G is a protector against chronic HBV (odds ratio [OR] = 0.62, 95% confidence intervals [CI]: 0.46-0.83, and p = 0.002). The TG/CC/AA, TG/CC/AG, TT/CC/AG, and GG/CC/AA combined genotypes significantly increased chronic HBV risk (p < 0.05), while the IL-18 G/T and G/G haplotypes lessened it (p < 0.05). Moreover, IL-18-rs1946518 T > G is in the protected genomic regions across mammalian species. In contrast to the IL-18-rs1946518 T > G, IL-18-rs187238 C > G is likely to create novel binding sites for transcription factors, and the CD14-rs2569190 A > G presumably changed the ribonucleic acid splicing pattern. More research on larger populations and other ethnicities is required to authenticate these results.

13.
J Exp Clin Cancer Res ; 43(1): 72, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454445

RESUMO

BACKGROUND: The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS: Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS: Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS: Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Monócitos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T/metabolismo , Imunoterapia , Microambiente Tumoral , Calgranulina B/metabolismo
14.
Clin Exp Immunol ; 216(3): 252-261, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38310540

RESUMO

Psoriasis is a chronic inflammatory skin disease with a characteristic isomorphic reaction, i.e. the Köbner reaction, induced by slight epidermal trauma. In this study, the tape-stripping technique was used to induce the development of Köbner reaction in 18 subjects with psoriasis. Eight subjects developed a positive reaction. To study the early cellular changes, skin biopsies were taken at the baseline and subsequent time points of 2 h, 1 d, 3 d, and 7 d for the immunostaining of complement C3c, iC3b, and cells expressing complement receptor 3 (CD11b/CD18; a receptor of iC3b) or CD14. The results show that the positive Köbner reaction is associated with rapid (2 h-1 d) and sustained (3-7 d) increase in the expression of epidermal C3c and iC3b and dermal C3c. In addition, there was a positive correlation between CD11b+ and CD14+ cells in baseline and 2 h-1 d biopsies with a subsequent increase in CD11b+ and CD14+ cells in 3-7 d biopsies in the Köbner-positive group. In the Köbner-negative group, only a transient increase in epidermal iC3b at 2 h-1 d, as well as rapid (2 h-1 d) and sustained increase (3-7 d) in dermal iC3b and CD14+ cells, was observed. In experiments with cultured monolayer keratinocytes, a slight cell damage already at 30 mJ/cm2 ultraviolet B irradiation led to increased expression of C3c, but not iC3b. Therefore, there are marked differences between Köbner groups in respect to the expression of C3c, iC3b, and cells expressing CD11b or CD14. Of note is the rapid and sustained increase in epidermal C3c and iC3b in the positive Köbner reaction.


Assuntos
Antígeno CD11b , Complemento C3b , Receptores de Lipopolissacarídeos , Psoríase , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Psoríase/imunologia , Psoríase/metabolismo , Feminino , Antígeno CD11b/metabolismo , Adulto , Pessoa de Meia-Idade , Complemento C3b/metabolismo , Complemento C3b/imunologia , Pele/patologia , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação , Biópsia , Epiderme/metabolismo , Epiderme/imunologia , Epiderme/patologia
15.
Front Immunol ; 15: 1341843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304426

RESUMO

Introduction: A group of SARS-CoV-2 infected individuals present lingering symptoms, defined as long COVID (LC), that may last months or years post the onset of acute disease. A portion of LC patients have symptoms similar to myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), which results in a substantial reduction in their quality of life. A better understanding of the pathophysiology of LC, in particular, ME/CFS is urgently needed. Methods: We identified and studied metabolites and soluble biomarkers in plasma from LC individuals mainly exhibiting ME/CFS compared to age-sex-matched recovered individuals (R) without LC, acute COVID-19 patients (A), and to SARS-CoV-2 unexposed healthy individuals (HC). Results: Through these analyses, we identified alterations in several metabolomic pathways in LC vs other groups. Plasma metabolomics analysis showed that LC differed from the R and HC groups. Of note, the R group also exhibited a different metabolomic profile than HC. Moreover, we observed a significant elevation in the plasma pro-inflammatory biomarkers (e.g. IL-1α, IL-6, TNF-α, Flt-1, and sCD14) but the reduction in ATP in LC patients. Our results demonstrate that LC patients exhibit persistent metabolomic abnormalities 12 months after the acute COVID-19 disease. Of note, such metabolomic alterations can be observed in the R group 12 months after the acute disease. Hence, the metabolomic recovery period for infected individuals with SARS-CoV-2 might be long-lasting. In particular, we found a significant reduction in sarcosine and serine concentrations in LC patients, which was inversely correlated with depression, anxiety, and cognitive dysfunction scores. Conclusion: Our study findings provide a comprehensive metabolomic knowledge base and other soluble biomarkers for a better understanding of the pathophysiology of LC and suggests sarcosine and serine supplementations might have potential therapeutic implications in LC patients. Finally, our study reveals that LC disproportionally affects females more than males, as evidenced by nearly 70% of our LC patients being female.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Masculino , Humanos , Feminino , Síndrome de COVID-19 Pós-Aguda , Doença Aguda , Qualidade de Vida , Sarcosina , SARS-CoV-2 , Biomarcadores , Serina
16.
PeerJ ; 12: e16776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274323

RESUMO

Background: Stomach adenocarcinoma (STAD) exhibits profound tumor heterogeneity and represents a great therapeutic challenge. Single-cell sequencing technology is a powerful tool to identify characteristic cell types. Methods: Single-cell sequencing data (scRNA-seq) GSE167297 and bulk RNA-seq data from TCGA, GTEx, GSE26901 and GSE15459 database were included in this study. By downscaling and annotating the cellular data in scRNA-seq, critical cell types in tumor progression were identified by AUCell score. Relevant gene modules were then identified by weighted gene co-expression network analysis (WGCNA). A prognostic scoring system was constructed by identifying prognostic factors in STAD by Least absolute shrinkage and selection operator (LASSO) COX model. The prognosis and model performance in the RiskScore groups were measured by Kaplan-Meier (K-M) curves and Receiver operating characteristic (ROC) curves. Nomogram was drawn based on RiskScore and prognosis-related clinical factors. In addition, we evaluated patient's feedback on immunotherapy in the RiskScore groups by TIMER, ESTIMATE and TIDE analysis. Finally, the expression levels of prognostic factors were verified in gastric cancer cell lines (MKN7 and MKN28) and human normal gastric mucosal epithelial cells (GES-1), and the effects of prognostic factors on the viability of gastric cancer cells were examined by the CCK8 assay and cell cycle. Results: scRNA-seq analysis revealed that 11 cell types were identified, and macrophages exhibited relatively higher AUCell scores and specifically expressed CD14 and FCGR3A. High macrophage scores worsened the prognosis of STAD patients. We intersected the specifically expressed genes in macrophages subgroups (670) and macrophage module genes (2,360) obtained from WGCNA analysis. Among 86 common genes, seven prognostic factors (RGS2, GNAI2, ANXA5, MARCKS, CD36, NRP1 and PDE4A) were identified and composed a RiskScore model. Patients in low Risk group showed a better survival advantage. Nomogram also provided a favorable prediction for survival at 1, 3 and 5 years in STAD patients. Besides, we found positive feedback to immunotherapy in patients with low RiskScore. The expression tendency of the seven prognostic factors in MKN7 and MKN28 was consistent with that in the RNA-seq data in addition to comparison of protein expression levels in the public HPA (The Human Protein Atlas) database. Further functional exploration disclosed that MARCKS was an important prognostic factor in regulating cell viability in STAD. Conclusion: This study preliminary uncovered a single cell atlas for STAD patients, and Macrophages relevant gene signature and nomogram displayed favorable immunotherapy and prognostic prediction ability. Collectively, our work provides a new insight into the molecular mechanisms and therapeutic approach for LUAD patients.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Prognóstico , Imunoterapia , Adenocarcinoma/genética , Receptores de IgG
17.
Oncol Lett ; 27(2): 60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192670

RESUMO

Cell surface markers are most widely used in the study of cancer stem cells (CSCs). However, cell surface markers that are safely and stably expressed in CSCs have yet to be identified. Colonic CSCs express leukocyte CD14. CD14 binding to the ligand lipopolysaccharide (LPS) is involved in the inflammatory response via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway. TLR4 and MyD88 have been reported to promote the proliferation, metastasis and tumorigenicity of colon cancer cells, which is consistent with the characteristics of CSCs. In the present study, the proposed experimental method to detect cell proliferation, metastasis and tumorigenesis was used to confirm that, under LPS stimulation, CD14 promoted the proliferation, migration and tumorigenesis of colonic CSCs via the TLR4/MyD88 signaling pathway. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess the proliferation and migration of the cells. Colony formation and nude mouse xenograft assays were used to assess the capacity of cells to form tumors. Using western blotting and reverse transcription-quantitative PCR, the mRNA and protein levels of CD14, TLR4 and MyD88 were examined. It was confirmed that CD14 promoted the proliferation, metastasis and tumorigenesis of colon CSCs in response to LPS stimulation via the TLR4/MyD88 signaling pathway, and CD14+ colon cancer cells were successfully isolated and sorted. According to the results of proliferation assay, it was determined that CD14 regulated the LPS-induced proliferation of colon CSCs. CD14, TLR4 and MyD88 protein and mRNA expression was upregulated in colon CSCs in response to LPS stimulation. This indicates a potential novel target for colon CSC-related studies.

18.
Clin Transplant ; 38(1): e15211, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041479

RESUMO

INTRODUCTION: The infusion of autograft Natural Killer Cells (NKC)/CD14+ HLA-DRDIM ratio is a predictor of survival in lymphoma patients undergoing autologous peripheral blood hematopoietic stem cell transplantation (APBHSCT). This study evaluated if the Day 100 NKC/CD14+ HLA-DRDIM ratio still functions as a prognostic immune-biomarker. METHODS: This was a retrospective, single-institution, cohort analysis including 107 patients in this study that had clinical assessment at Day 100 post-APBHSCT from our prior phase III trial. We evaluated the prognostic ability of the Day 100 NKC/CD14+ HLA-DRDIM ratio to predict overall survival (OS) and progression-free survival (PFS) using Cox regression model for outcome analysis and survival by Kaplan-Meier method. RESULTS: The median follow-up from day 100 was 94.7 months (range 4.83-158.1 months) for the entire cohort. Patients with a Day 100 NKC/CD14+ HLA-DRDIM ratio ≥1.67 experienced better OS and PFS versus those with a Day 100 NKC/CD14+ HLA-DRDIM ratio <1.67: median OS was not reached versus 49.7 months, the 5-year OS rates were 91% (95% CI, 81%-96%) versus 40% (95% CI, 27%-55%), p < .0001, respectively; and median PFS was not reached versus 23.5 months, the 5-year PFS rates were 66% (95% CI, 55%-81%) versus 21% (95% CI, 15%-40%), p < .0001, respectively. Day 100 NKC/CD14+ HLA-DRDIM ratio was an independent predictor for OS and PFS in the multivariate analysis. CONCLUSIONS: Day 100 NKC/CD14+ HLA-DRDIM ratio is a prognostic immune-biomarker in lymphoma patients post- APBHSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma , Humanos , Estudos Retrospectivos , Transplante de Células-Tronco Hematopoéticas/métodos , Linfoma/terapia , Antígenos HLA-DR , Células Matadoras Naturais , Transplante Autólogo/métodos , Biomarcadores , Intervalo Livre de Doença
19.
Int J Clin Exp Pathol ; 16(8): 184-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693684

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a non-inflammatory degenerative joint disease that mainly involves articular cartilage damage and involves the whole joint tissue. However, the relationship between CD14 and CSF1R and osteoarthritis remains unclear. The aim of this study was to explore the important role of CD14 and CSF1R in osteoarthritis and provide a new direction for its prevention and treatment. METHOD: The osteoarthritis datasets GSE46750 and GSE82107 were downloaded from gene expression omnibus (GEO) database generated by GPL10558 and GPL570. R package limma was used to screen differentially expressed genes (DEDs). Weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of a protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA), and comparative toxicogenomics database (CTD) analysis were performed. TargetScan screened miRNAs that regulated central DEGs. RESULTS: 687 DEGs were identified. According to gene ontology (GO), they were mainly concentrated in inflammatory response, IL-17 signaling pathway, rheumatoid arthritis, exercise, and regulation of response to external stimuli. The enrichment items are similar to the GO Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment items of DEGs. These were mainly concentrated in exercise, inflammatory response, defense response, collagen containing extracellular matrix, and receptor regulator activity. In an enrichment project of Metascape, GO had inflammatory response, SARS-CoV-2 signal pathway network map, PIDIL8CXCR1 pathway, regulation of bone remodeling and endochondral ossification. 20 core genes were obtained by PPI network construction and analysis. Gene expression heat map showed that core genes (C1QC, CSF1R, CD14, TYROBP, HLA-DRA, C1QB, FCER1G, S100A9, HCLS1, WAS, BTK, TREM1) were highly expressed in osteoarthritis synovial tissues and were low in normal synovial tissues. CTD analysis showed that twelve genes (C1QC, CSF1R, CD14, TYROBP, HLA-DRA, C1QB, FCER1G, S100A9, HCLS1, WAS, BTK, TREM1) were found to be associated with inflammation, necrosis, gout, acute myeloid leukemia and thrombocytopenia. CONCLUSION: CD14 and CSF1R are highly expressed in osteoarthritis and may be therapeutic targets for osteoarthritis.

20.
Viruses ; 15(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37766191

RESUMO

COVID-19 is characterized by a heterogeneous clinical presentation and prognosis. Risk factors contributing to the development of severe disease include old age and the presence of comorbidities. However, the genetic background of the host has also been recognized as an important determinant of disease prognosis. Considering the pivotal role of innate immunity in the control of SARS-CoV-2 infection, we analyzed the possible contribution of several innate immune gene polymorphisms (including TLR2-rs5743708, TLR4-rs4986790, TLR4-rs4986791, CD14-rs2569190, CARD8-rs1834481, IL18-rs2043211, and CD40-rs1883832) in disease severity and prognosis. A total of 249 individuals were enrolled and further divided into five (5) groups, according to the clinical progression scale provided by the World Health Organization (WHO) (asymptomatic, mild, moderate, severe, and critical). We identified that elderly patients with obesity and/or diabetes mellitus were more susceptible to developing pneumonia and respiratory distress syndrome after SARS-CoV-2 infection, while the IL18-rs1834481 polymorphism was an independent risk factor for developing pneumonia. Moreover, individuals carrying either the TLR2-rs5743708 or the TLR4-rs4986791 polymorphisms exhibited a 3.6- and 2.5-fold increased probability for developing pneumonia and a more severe disease, respectively. Our data support the notion that the host's genetic background can significantly affect COVID-19 clinical phenotype, also suggesting that the IL18-rs1834481, TLR2-rs5743708, and TLR4-rs4986791 polymorphisms may be used as molecular predictors of COVID-19 clinical phenotype.


Assuntos
COVID-19 , Idoso , Humanos , COVID-19/genética , Interleucina-18 , Receptor 2 Toll-Like , Receptor 4 Toll-Like , SARS-CoV-2 , Prognóstico , Imunidade Inata , Polimorfismo Genético , Fatores de Risco , Proteínas de Neoplasias , Proteínas Adaptadoras de Sinalização CARD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA