Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Neoplasia ; 57: 101054, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39366214

RESUMO

Aberrant expression of cyclin-dependent kinase 5 (Cdk5) has been reported in pituitary adenomas. However, the role of Cdk5 in the tumorigenesis remains unclear. We show that prenatal p25-activated Cdk5 phosphorylates minichromosome maintenance protein 2 (Mcm2), enhancing minichromosome maintenance (MCM) family proteins and driving intermediate lobe-located melanotrope-originated pituitary tumorigenesis. In a mouse model with CaMKII promoter-driven transgenic induction of p25, we observed intermediate lobe-originated pituitary adenoma producing non-functional proopiomelanocortin (POMC)-derived peptides under persistent p25 overexpression. Single-cell RNA sequencing revealed Mcm2 may play an important role during tumor progression. Subsequently, Mcm2 was identified as a potential phosphorylated substrate of Cdk5, mediating the tumorous proliferation of melanotrope cells. Silencing Cdk5 or Mcm2 suppressed cell proliferation and colony formation in the 293T cell lines. Therefore, our findings provide a new mouse model of intermediate lobe-originated pituitary adenoma induced by p25/Cdk5 and unveil a previously unappreciated role of Cdk5 and Mcm2 in pituitary adenoma tumorigenesis.

2.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39273671

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) of the incretin group has been shown to exert pleiotropic actions. There is growing evidence that advanced glycation end products (AGEs), senescent macromolecules formed at an accelerated rate under chronic hyperglycemic conditions, play a role in the pathogenesis of atherosclerotic cardiovascular disease in diabetes. However, whether and how GIP could inhibit the AGE-induced foam cell formation of macrophages, an initial step of atherosclerosis remains to be elucidated. In this study, we address these issues. We found that AGEs increased oxidized low-density-lipoprotein uptake into reactive oxygen species (ROS) generation and Cdk5 and CD36 gene expressions in human U937 macrophages, all of which were significantly blocked by [D-Ala2]GIP(1-42) or an inhibitor of NADPH oxidase activity. An inhibitor of AMP-activated protein kinase (AMPK) attenuated all of the beneficial effects of [D-Ala2]GIP(1-42) on AGE-exposed U937 macrophages, whereas an activator of AMPK mimicked the effects of [D-Ala2]GIP(1-42) on foam cell formation, ROS generation, and Cdk5 and CD36 gene expressions in macrophages. The present study suggests that [D-Ala2]GIP(1-42) could inhibit the AGE-RAGE-induced, NADPH oxidase-derived oxidative stress generation in U937 macrophages via AMPK activation and subsequently suppress macrophage foam cell formation by reducing the Cdk5-CD36 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Quinase 5 Dependente de Ciclina , Células Espumosas , Polipeptídeo Inibidor Gástrico , Produtos Finais de Glicação Avançada , NADPH Oxidases , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Células Espumosas/metabolismo , Células Espumosas/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Estresse Oxidativo/efeitos dos fármacos , NADPH Oxidases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Antígenos CD36/metabolismo , Antígenos CD36/genética , Células U937 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Lipoproteínas LDL
3.
J Cell Biochem ; : e30633, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148280

RESUMO

Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.

4.
Small ; 20(33): e2311507, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856024

RESUMO

The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.


Assuntos
Antígeno B7-H1 , Quinase 5 Dependente de Ciclina , Imunoterapia , Fotoquimioterapia , Fotoquimioterapia/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Imunoterapia/métodos , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Camundongos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Clorofilídeos
5.
Future Med Chem ; 16(15): 1519-1535, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864182

RESUMO

Aim: A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. Materials & methods: All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of GSK-3α, GSK-3ß, DYRK1 and CDK5 were assessed in the presence of compounds 6m and 6p.Results:6m and 6p; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. 6m demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, 6m displayed a significant downregulation in mRNA levels of GSK-3α, GSK-3ß and CDK5.Conclusion: The target compounds could be considered in developing anti-Alzheimer's disease agents.


[Box: see text].


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Quinase 5 Dependente de Ciclina , Hidrazonas , Triazóis , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Butirilcolinesterase/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
6.
J Neurochem ; 168(9): 2908-2925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38934222

RESUMO

Deregulated cyclin-dependent kinase 5 (Cdk5) activity closely correlates with hyperphosphorylated tau, a common pathology found in neurodegenerative diseases. Previous postmortem studies had revealed increased Cdk5 immunoreactivity in amyotrophic lateral sclerosis (ALS); hence, we investigated the effects of Cdk5 inhibition on ALS model mice and neurons in this study. For the in vitro study, motor neuron cell lines with wild-type superoxide dismutase 1 (SOD1) or SOD1G93A and primary neuronal cultures from SOD1G93A transgenic (TG) mice or non-TG mice were compared for the expression of proteins involved in tau pathology, neuroinflammation, apoptosis, and neuritic outgrowth by applying Cdk5-small interfering RNA or Cdk5-short hairpin RNA (shRNA). For the in vivo study, SOD1G93A mice and non-TG mice were intrathecally injected with adeno-associated virus 9 (AAV9)-scramble (SCR)-shRNA or AAV9-Cdk5-shRNA at the age of 5 weeks. Weight and motor function were measured three times per week from 60 days of age, longevity was evaluated, and the tissues were collected from 90-day-old or 120-day-old mice. Neurons with SOD1G93A showed increased phosphorylated tau, attenuated neuritic growth, mislocalization of SOD1, and enhanced neuroinflammation and apoptosis, all of which were reversed by Cdk5 inhibition. Weights did not show significant differences among non-TG and SOD1G93A mice with or without Cdk5 silencing. SOD1G93A mice treated with AAV9-Cdk5-shRNA showed significantly delayed disease onset, delayed rotarod failure, and prolonged survival compared with those treated with AAV9-SCR-shRNA. The brain and spinal cord of SOD1G93A mice intrathecally injected with AAV9-Cdk5-shRNA exhibited suppressed tau pathology, neuroinflammation, apoptosis, and an increased number of motor neurons compared to those of SOD1G93A mice injected with AAV9-SCR-shRNA. Cdk5 inhibition could be an important mechanism in the development of a new therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Quinase 5 Dependente de Ciclina , Superóxido Dismutase-1 , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Degeneração Neural/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Superóxido Dismutase , Superóxido Dismutase-1/genética , Proteínas tau/metabolismo , Proteínas tau/genética
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731841

RESUMO

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Assuntos
Quinase 5 Dependente de Ciclina , Mariposas , Proteínas Proto-Oncogênicas c-akt , Interferência de RNA , Animais , Feminino , Masculino , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Fertilidade/efeitos da radiação , Fertilidade/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Reprodução/efeitos da radiação , Reprodução/genética
8.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725860

RESUMO

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fator de Transcrição STAT3 , Transdução de Sinais , Tetraspaninas , Animais , Humanos , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Exossomos/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator de Transcrição STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética
9.
Cancer Lett ; 591: 216882, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636893

RESUMO

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.


Assuntos
Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Retículo Endoplasmático/metabolismo , Elementos Facilitadores Genéticos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Nus , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Prognóstico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682237

RESUMO

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Assuntos
Diferenciação Celular , Quinase 5 Dependente de Ciclina , Metformina , Fator de Crescimento Neural , Neurônios , Receptor trkA , Animais , Metformina/farmacologia , Ratos , Células PC12 , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fosfotransferases
11.
Eur J Med Res ; 29(1): 242, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643190

RESUMO

BACKGROUND: The metastasis and aggressive nature of prostate cancer (PCa) has become a major malignancy related threat that concerns men's health. The efficacy of immune monotherapy against PCa is questionable due to its lymphocyte-suppressive nature. METHOD: Endoplasmic reticulum stress- (ERS-) and PCa-prognosis-related genes were obtained from the Molecular Signatures Database and the Cancer Genome Atlas database. The expression, prognosis and immune infiltration values of key genes were explored by "survival R package", "rms", "xCELL algorithm", and univariate-multivariate Cox and LASSO regression analyses. The "consensus cluster plus R package" was used for cluster analysis. RESULT: As ERS-related genes, ERLIN2 and CDK5RAP3 showed significant expressional, prognostic and clinic-pathologic values. They were defined as the key genes significantly correlated with immune infiltration and response. The nomogram was constructed with T-stage and primary treatment outcome, and the risk-prognostic model was constructed in the following way: Riskscore = (- 0.1918) * ERLIN2 + (0.5254) * CDK5RAP3. Subsequently, prognostic subgroups based on key genes classified the high-risk group as a pro-cancer subgroup that had lower mutation rates of critical genes (SPOP and MUC16), multiple low-expression immune-relevant molecules, and differences in macrophages (M1 and M2) expressions. Finally, ERLIN2 as an anti-oncogene and CDK5RAP3 as a pro-oncogene were further confirmed by cell phenotype assays and immunohistochemistry. CONCLUSION: We identified ERLIN2 and CDK5RAP3 as ERS-related genes with important prognostic and immunologic values, and classified patients between high- and low-risk subgroups, which provided new prognostic markers, immunotherapeutic targets, and basis for prognostic assessments.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Biomarcadores , Neoplasias da Próstata/genética , Nomogramas , Algoritmos , Proteínas Nucleares , Proteínas Repressoras , Proteínas de Ciclo Celular , Proteínas Supressoras de Tumor
12.
CNS Neurosci Ther ; 30(2): e14629, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363020

RESUMO

CONTEXT: Prolactinomas are the most prevalent functional pituitary neuroendocrine tumors (PitNETs), and they are invasive to surrounding anatomic structures. The detailed mechanisms of invasion are not yet clear. OBJECTIVE: We explored the role of PBK phosphorylation in the proliferation and invasion of prolactinomas and its possible mechanism. RESULTS: We report that PBK directly binds to and is phosphorylated at Thr9 by cyclin-dependent kinase 5 (CDK5), which promotes GH3 cell EMT progression and proliferation. Phosphorylation of PBK at Thr9 (pPBK-T9) by CDK5 enhances the stability of PBK. p38 is one of the downstream targets of PBK, and its phosphorylation is reduced as pPBK-T9 increases in vivo and in vitro. Furthermore, we found that pPBK-T9 is highly expressed in invasive PitNETs and was significantly correlated with invasion by univariate and multivariate analyses. CONCLUSIONS: Phosphorylation of PBK at Thr9 by CDK5 promotes cell proliferation and EMT progression in prolactinomas.


Assuntos
Neoplasias Hipofisárias , Prolactinoma , Humanos , Proliferação de Células , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Prolactinoma/metabolismo , Prolactinoma/patologia , Invasividade Neoplásica
13.
Anticancer Res ; 44(2): 543-553, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307563

RESUMO

BACKGROUND/AIM: Bladder cancer remains a significant global health concern, necessitating a deeper understanding of the molecular mechanisms underlying its progression. Cyclin-Dependent Kinase 5 (CDK5) has recently emerged as a potential player in bladder cancer pathogenesis. This study investigated the involvement of CDK5 in bladder cancer, emphasizing its potential as a therapeutic target. MATERIALS AND METHODS: The expression levels of CDK5 and p35 (CDK5 regulatory protein) and their roles in the tumor grade and malignancy of patient samples were evaluated using western blot analysis and immunohistochemistry. In addition, tumor cancer genome atlas (TCGA) was utilized to evaluate survival rate in patients with bladder cancer. We further confirmed the role of CDK5 with in vitro experiments using western blot analysis, immunocytochemistry, cell culture-based proliferation and migration assays. RESULTS: Higher CDK5 and p35 were associated with a higher tumor grade and poor survival rate in patients with bladder cancer. To confirm the role of CDK5 in vitro, we over-expressed CDK5 in bladder cancer cells. The results showed that the over-expression of CDK5 enhanced bladder cancer cell proliferation and migration. In addition, CDK5 inhibition by a pan-CDK inhibitor, Roscovitine (RV), significantly reduced proliferation of bladder cancer cells. Indeed, the migration and adhesion of bladder cancer cells were inhibited by RV treatment. CONCLUSION: CDK5 might play important roles in bladder cancer progression and be a potential diagnostic and therapeutic target in the near future.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Proliferação de Células , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Roscovitina , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
14.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165434

RESUMO

Honey-iQfood is an herbal supplement made of a mixture of polyherbal extracts and wild honey. The mixture is traditionally claimed to improve various conditions related to brain cells and functions including dementia and Alzheimer's disease. Glycogen synthase kinase-3 beta (GSK-3ß) and cyclin-dependent kinase 5 (CDK5) have been identified as being involved in the pathological hyperphosphorylation of tau proteins, which leads to the formation of neurofibrillary tangles and causes Alzheimer's disease. Therefore, this study was conducted to confirm the traditional claims by detection of active compounds, namely curcumin, gallic acid, catechin, rosmarinic acid, and andrographolide in the raw materials of Honey-iQfood through HPLC analysis, molecular docking, and dynamic simulations. Two potential compounds, andrographolide, and rosmarinic acid, produced the best binding affinities following the molecular docking of the active compounds against the GSK-3ß and CDK5 targets. Andrographolide binds with GSK-3ß at -8.2 kcal/mol, whereas rosmarinic acid binds to CDK5 targets at -8.6 kcal/mol. Molecular dynamics was further carried out to confirm the docking results and clarify their dynamic properties such as RMSD, RMSF, rGyr, SASA, PSA, and binding free energy. CDK5-andrographolide complexes had the best MM-GBSA score (-83.63 kcal/mol) compared to other complexes, indicating the better interaction profile and stability of the complex. These findings warrant further research into andrographolide and rosmarinic acid as efficient inhibitors of tau protein hyperphosphorylation to verify their therapeutic potential in brain-related illnesses.Communicated by Ramaswamy H. Sarma.

15.
J Biomol Struct Dyn ; 42(2): 1088-1097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37011009

RESUMO

Resveratrol is a natural compound with a wide range of biological functions that generate health benefits under normal conditions and in multiple diseases. This has attracted the attention of the scientific community, which has revealed that this compound exerts these effects through its action on different proteins. Despite the great efforts made, due to the challenges involved, not all the proteins with which resveratrol interacts have yet been identified. In this work, using protein target prediction bioinformatics systems, RNA sequencing analysis and protein-protein interaction networks, 16 proteins were identified as potential targets of resveratrol. Due to its biological relevance, the interaction of resveratrol with the predicted target CDK5 was further investigated. A docking analysis found that resveratrol can interact with CDK5 and be positioned in its ATP-binding pocket. Resveratrol forms hydrogen bonds between its three hydroxyl groups (-OH) and CDK5 residues C83, D86, K89 and D144. Molecular dynamics analysis showed that these bonds allow resveratrol to remain in the pocket and suggest inhibition of CDK5 activity. All this allows us to better understand how resveratrol acts and to consider CDK5 inhibition within its biological actions, mainly in neurodegenerative diseases where this protein has been shown to be relevant.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Resveratrol/farmacologia , Resveratrol/química , Simulação de Acoplamento Molecular
16.
Redox Biol ; 69: 102994, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128451

RESUMO

Progression of ß-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in ß-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in ß-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves ß-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves ß-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved ß-cell function and survival under high-glucose conditions via the glutathione redox balance.


Assuntos
Sulfeto de Hidrogênio , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Sulfeto de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Aldeído Desidrogenase/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Glutationa/metabolismo , Glucose/metabolismo
17.
Bull Exp Biol Med ; 176(1): 19-25, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38087140

RESUMO

We studied the effect of TFP5 on MIN6 cells (cultured mouse islet ß cells) treated with different concentrations of glucose (5 or 25 mM). The results were verified in C57BL/6J mice (control; n=12) and db/db mice with type 2 diabetes mellitus (n=12). To synthesize TFP5, peptide p5 (a derivative of p35 protein, activator of cyclin-dependent kinase 5, Cdk5) was conjugated with a FITC tag at the N-terminus and an 11-amino acid TAT protein transduction domain at the C-terminus. TFP5 was employed to inhibit Cdk5 activity and then to evaluate its efficiency in treating experimental type 2 diabetes mellitus. TFP5 effectively inhibited the pathological hyperactivity of Cdk5, enhanced insulin secretion, and protected pancreatic ß cells from apoptosis in vitro and in vivo. In addition, TFP5 inhibited inflammation in pancreatic islets by reducing the expression of inflammatory cytokines TGF-ß1, TNFα, and IL-1ß. These novel data indicates that TFP5 is a promising candidate for treatment of type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/toxicidade , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia
18.
Electromagn Biol Med ; 42(4): 150-162, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-38155529

RESUMO

Shortwave radiation has been reported to have harmful effects on several organs in humans and animals. However, the biological effects of 27 MHz shortwave on the reproductive system are not clear. In this study, we investigated the effects of shortwave whole-body exposure at a frequency of 27 MHz on structural and functional changes in the testis. Male Wistar rats were exposed to 27 MHz continuous shortwaves at average power densities of 0, 5, 10, or 30 mW/cm2 for 6 min. The levels of insulin-like factor 3 (INSL3) and anti-sperm antibodies (AsAb) in the peripheral serum, sperm motility, sperm malformation rate, and testicular tissue structure of rats were analyzed. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) content, calpain, and Cdk5 expression were analyzed at 1, 7, 14, and 28 days after exposure. We observed that the rats after radiation had decreased serum INSL3 levels (p < 0.01), increased AsAb levels (p < 0.05), decreased percentage of class A+B sperm (p < 0.01 or p < 0.05), increased sperm malformation (p < 0.01 or p < 0.05), injured testicular tissue structure, decreased SOD and CAT activities (p < 0.01 or p < 0.05), increased MDA content (p < 0.01), and testicular tissue expressions of calpain1, calpain2, and Cdk5 were increased (p < 0.01 or p < 0.05). In conclusion, Shortwave radiation caused functional and structural damage to the reproductive organs of male rats. Furthermore, oxidative stress and key molecules in the calpain/Cdk5 pathway are likely involved in this process.


Shortwave radiation has been used in communications, medical and military applications, and its damaging effects on several organs of the human body have been reported in the literature. However, the biological effects of shortwave radiation on the male reproductive system are unknown. The present study, by constructing an animal model of short-wave radiation and analyzing the experimental results, revealed that shortwave radiation could cause functional and structural damage to the reproductive organs of male rats, and that oxidative stress and key molecules in the calpain/Cdk5 pathway might be involved in this process. It will provide organizational data for further studies on the mechanisms of male reproductive damage by shortwave radiation.


Assuntos
Calpaína , Motilidade dos Espermatozoides , Humanos , Ratos , Masculino , Animais , Calpaína/metabolismo , Calpaína/farmacologia , Ratos Wistar , Sêmen/metabolismo , Testículo/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Espermatozoides/metabolismo , Superóxido Dismutase/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/farmacologia
19.
Mol Cancer ; 22(1): 186, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993880

RESUMO

Recent studies have uncovered various physiological functions of CDK5 in many nonneuronal tissues. Upregulation of CDK5 and/or its activator p35 in neurons promotes healthy neuronal functions, but their overexpression in nonneuronal tissues is causally linked to cancer of many origins. This review focuses on the molecular mechanisms by which CDK5 recruits diverse tissue-specific substrates to elicit distinct phenotypes in sixteen different human cancers. The emerging theme suggests that CDK5's role as an oncogene or anti-oncogene depends upon its subcellular localization. CDK5 mostly acts as an oncogene, but in gastric cancer, it is a tumor suppressor due to its unique nuclear localization. This indicates that CDK5's access to certain nuclear substrates converts it into an anti-oncogenic kinase. While acting as a bonafide oncogene, CDK5 also activates a few cancer-suppressive pathways in some cancers, presumably due to the mislocalization of nuclear substrates in the cytoplasm. Therefore, directing CDK5 to the nucleus or exporting tumor-suppressive nuclear substrates to the cytoplasm may be promising approaches to combat CDK5-induced oncogenicity, analogous to neurotoxicity triggered by nuclear CDK5. Furthermore, while p35 overexpression is oncogenic, hyperactivation of CDK5 by inducing p25 formation results in apoptosis, which could be exploited to selectively kill cancer cells by dialing up CDK5 activity, instead of inhibiting it. CDK5 thus acts as a molecular rheostat, with different activity levels eliciting distinct functional outcomes. Finally, as CDK5's role is defined by its substrates, targeting them individually or in conjunction with CDK5 should create potentially valuable new clinical opportunities.


Assuntos
Apoptose , Proteínas do Tecido Nervoso , Humanos , Proteínas do Tecido Nervoso/genética , Oncogenes , Citoplasma/metabolismo , Genes Supressores de Tumor , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo
20.
Cancer Cell Int ; 23(1): 286, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990321

RESUMO

BACKGROUND: Chemoresistance is a major clinical challenge that leads to tumor metastasis and poor clinical outcome. The mechanisms underlying gastric cancer resistance to chemotherapy are still unclear. METHODS: We conducted bioinformatics analyses of publicly available patient datasets to establish an apoptotic phenotype and determine the key pathways and clinical significance. In vitro cell models, in vivo mouse models, and numerous molecular assays, including western blotting, qRT-PCR, immunohistochemical staining, and coimmunoprecipitation assays were used to clarify the role of factors related to apoptosis in gastric cancer in this study. Differences between datasets were analyzed using the Student's t-test and two-way ANOVA; survival rates were estimated based on Kaplan-Meier analysis; and univariate and multivariate Cox proportional hazards models were used to evaluate prognostic factors. RESULTS: Bulk transcriptomic analysis of gastric cancer samples established an apoptotic phenotype. Proapoptotic tumors were enriched for DNA repair and immune inflammatory signaling and associated with improved prognosis and chemotherapeutic benefits. Functionally, cyclin-dependent kinase 5 (CDK5) promoted apoptosis of gastric cancer cells and sensitized cells and mice to oxaliplatin. Mechanistically, we demonstrate that CDK5 stabilizes DP1 through direct binding to DP1 and subsequent activation of E2F1 signaling. Clinicopathological analysis indicated that CDK5 depletion correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSION: Our findings reveal that CDK5 promotes cell apoptosis by stabilizing DP1 and activating E2F1 signaling, suggesting its potential role in the prognosis and therapeutic decisions for patients with gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA