Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497307

RESUMO

The biology of cancer stem cells (CSCs) of pediatric cancers, such as hepatoblastoma, is sparsely explored. This is mainly due to the very immature nature of these tumors, which complicates the distinction of CSCs from the other tumor cells. Previously, we identified a CSC population in hepatoblastoma cell lines expressing the CSC markers CD34 and CD90, cell surface Vimentin (csVimentin) and binding of OV-6. In this study, we detected the co-expression of the immune escape factor PD-L1 in the CSC population, whereas the other tumor cells remained negative. FACS data revealed that non-CSCs give rise to CSCs, reflecting plasticity of CSCs and non-CSCs in hepatoblastoma as seen in other tumors. When we treated cells with cisplatin and decitabine, a new CD34+/lowOV-6lowCD90+ population emerged that lacked csVimentin and PD-L1 expression. Expression analyses showed that this new CSC subset shared similar pluripotency and EMT features with the already-known CSCs. FACS results further revealed that this subset is also generated from non-CSCs. In conclusion, we showed that hepatoblastoma CSCs express PD-L1 and that the biology of hepatoblastoma CSCs is of a plastic nature. Chemotherapeutic treatment leads to another CSC subset, which is highly chemoresistant and could be responsible for a poor prognosis after postoperative chemotherapy.

2.
Stem Cell Rev Rep ; 16(2): 397-412, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965409

RESUMO

In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs. Graphical Abstract .


Assuntos
Plasticidade Celular , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/patologia , Plasticidade Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA