RESUMO
Reports about the impact of Carbon tetrachloride (CCl4) hepatotoxicity on coagulation profile have been inconsistent. Multiple investigators have however demonstrated the effectiveness of silymarin in the resolution of anomalies induced by CCl4, although the effect of silymarin on the impact of CCl4 hepatotoxicity, especially coagulation profile and osmotic fragility have not been investigated. The liver, the primary site for the secretion of coagulation proteins, can become impaired in CCl4 hepatotoxicity, and silymarin reportedly increases hepatic protein synthesis as part of its hepatoprotective mechanism. This study assessed the effect of silymarin on blood coagulation profile and erythrocyte osmotic fragility in CCl4 induced hepatotoxicity in rats. Twenty male Wistar rats were allocated into four groups (n = 5) at random, namely: Control, CCl4 given CCl4 (1 ml/kg) administered intraperitoneally twice a week, Silymarin (S) given silymarin (100 mg/kg/day) orally, and S+CCl4 given silymarin (100 mg/kg/day) orally and (1 ml/kg) CCl4 one hour after, intraperitoneally twice a week for a duration of four weeks. Results showed protraction of activated partial thromboplastin time and thrombin time, increased erythrocyte osmotic fragility, liver damage, dyslipidemia, oxidative stress and lipid peroxidation in rats given CCl4. Silymarin attenuated most of these effects as observed from comparison between CCl4 and S+CCl4 rats. The findings of this study suggests that pretreatment with silymarin attenuated disruption in coagulation profile and erythrocyte osmotic fragility in CCl4 induced hepatotoxicity in Wistar rats.
RESUMO
Herbal products are widely used in cancer patients via co-administration with chemotherapy. Previous studies have demonstrated that pharmacokinetic interactions between herbs and anticancer drugs exist due to inhibition of drug-metabolizing enzymes, particularly cytochrome P450s (CYPs). The aim of this study was to determine the inhibitory effects of Andrographis paniculata, Curcuma zedoaria, Ganoderma lucidum, Murdannia loriformis and Ventilago denticulata extracts on the metabolism of gefitinib, lapatinib and sorafenib. The activities of CYP3A in human liver microsome on the metabolism of gefitinib, lapatinib and sorafenib in the absence and presence of Thai herbal extracts were assayed using high-performance liquid chromatography analysis. Curcuma zedoaria extract potently inhibited CYP3A-mediated lapatinib and sorafenib metabolism with IC50 values of 4.18 ± 3.20 and 7.59 ± 1.23 µg/mL, respectively, while the metabolism of gefitinib was strongly inhibited by Murdannia loriformis and Ventilago denticulata extracts with IC50 values of 7.53 ± 2.87 and 7.06 ± 1.23 µg/mL, respectively. Andrographis paniculata and Ganoderma lucidum extracts had less effect on the metabolism of the tested anticancers (IC50 values >10 µg/mL). In addition, kinetic analysis of the ability of Curcuma zedoaria extract to inhibit CYP3A-mediated metabolism of anticancer drugs was best described by the noncompetitive and competitive inhibition models with Ki values of 20.08 and 11.55 µg/mL for the metabolism of gefitinib and sorafenib, respectively. The present study demonstrated that there were potential pharmacokinetic interactions between tyrosine kinase inhibitors and herbal extracts.
RESUMO
In recent years, new nicotine delivery methods have emerged, and many users are choosing electronic cigarettes (e-cigarettes) over traditional tobacco cigarettes. E-cigarette use is very popular among adolescents, with more than 3.5 million currently using these products in the US. Despite the increased prevalence of e-cigarette use, there is limited knowledge regarding the health impact of e-cigarettes on the general population. Based on published findings by others, E-cigarette is associated with lung injury outbreak, which increased health and safety concerns related to consuming this product. Different components of e-cigarettes, including food-safe liquid solvents and flavorings, can cause health issues related to pneumonia, pulmonary injury, and bronchiolitis. In addition, e-cigarettes contain alarmingly high levels of carcinogens and toxicants that may have long-lasting effects on other organ systems, including the development of neurological manifestations, lung cancer, cardiovascular disorders, and tooth decay. Despite the well- documented potential for harm, e-cigarettes do not appear to increase susceptibility to SARS-CoV- 2 infection. Furthermore, some studies have found that e-cigarette users experience improvements in lung health and minimal adverse effects. Therefore, more studies are needed to provide a definitive conclusion on the long-term safety of e-cigarettes. The purpose of this review is to inform the readers about the possible health-risks associated with the use of e-cigarettes, especially among the group of young and young-adults, from a molecular biology point of view.
RESUMO
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
RESUMO
COVID-19 pandemic caused by very severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) agent is an ongoing major global health concern. The disease has caused more than 452 million affected cases and more than 6 million death worldwide. Hence, there is an urgency to search for possible medications and drug treatments. There are no approved drugs available to treat COVID-19 yet, although several vaccine candidates are already available and some of them are listed for emergency use by the world health organization (WHO). Identifying a potential drug candidate may make a significant contribution to control the expansion of COVID-19. The in vitro biological activity of asymmetric disulfides against coronavirus through the inhibition of SARS-CoV-2 main protease (Mpro) protein was reported. Due to the lack of convincing evidence those asymmetric disulfides have favorable pharmacological properties for the clinical treatment of Coronavirus, in silico evaluation should be performed to assess the potential of these compounds to inhibit the SARS-CoV-2 Mpro. In this context, we report herein the molecular docking for a series of 40 unsymmetrical aromatic disulfides as SARS-CoV-2 Mpro inhibitor. The optimal binding features of disulfides within the binding pocket of SARS-CoV-2 endoribonuclease protein (Protein Data Bank [PDB]: 6LU7) was described. Studied compounds were ranked for potential effectiveness, and those have shown high molecular docking scores were proposed as novel drug candidates against SARS-CoV-2. Moreover, the outcomes of drug similarity and ADME (Absorption, Distribution, Metabolism, and Excretion) analyses have may have the effectiveness of acting as medicines, and would be of interest as promising starting point for designing compounds against SARS-CoV-2. Finally, the stability of these three compounds in the complex with Mpro was validated through molecular dynamics (MD) simulation, in which they displayed stable trajectory and molecular properties with a consistent interaction profile.
RESUMO
Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids (BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. hPXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.
RESUMO
EGFR inhibitors used in oncology therapy modify the keratinocyte differentiation processes, impairing proper skin barrier formation and leading to cutaneous adverse drug reactions. To uncover the molecular signatures associated with cutaneous adverse drug reactions, we applied phosphoproteomic and transcriptomic assays on reconstructed human epidermis tissues exposed to a therapeutically relevant concentration of afatinib, a second-generation EGFR inhibitor. After drug exposure, we observed activation of the phosphatidylinositol 3-kinase/protein kinase B pathway associated with an increased expression of gene families involved in keratinocyte differentiation, senescence, oxidative stress, and alterations in the epidermal immune-related markers. Furthermore, our results show that afatinib may interfere with vitamin D3 metabolism, acting via CYP27A1 and CYP24A1 to regulate calcium concentration through the phosphatidylinositol 3-kinase/protein kinase B pathway. Consequently, basal layer keratinocytes switch from a pro-proliferating to a prodifferentiative program, characterized by upregulation of biomarkers associated with increased keratinization, cornification, T helper type 2 response, and decreased innate immunity. Such effects may increase skin susceptibility to cutaneous penetration of irritants and pathogens. Taken together, these findings demonstrate a molecular mechanism of EGFR inhibitor-induced cutaneous adverse drug reactions.
RESUMO
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
RESUMO
Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1) is significantly hindering effective cancer chemotherapy. However, currently, no ABCB1-inhibitory drugs have been approved to treat MDR cancer clinically, mainly due to the inhibitor specificity, toxicity, and drug interactions. Here, we reported that three polyoxypregnanes (POPs) as the most abundant constituents of Marsdenia tenacissima (M. tenacissima) were novel ABCB1-modulatory pro-drugs, which underwent intestinal microbiota-mediated biotransformation in vivo to generate active metabolites. The metabolites at non-toxic concentrations restored chemosensitivity in ABCB1-overexpressing cancer cells via inhibiting ABCB1 efflux activity without changing ABCB1 protein expression, which were further identified as specific non-competitive inhibitors of ABCB1 showing multiple binding sites within ABCB1 drug cavity. These POPs did not exhibit ABCB1/drug metabolizing enzymes interplay, and their repeated administration generated predictable pharmacokinetic interaction with paclitaxel without obvious toxicity in vivo. We further showed that these POPs enhanced the accumulation of paclitaxel in tumors and overcame ABCB1-mediated chemoresistance. The results suggested that these POPs had the potential to be developed as safe, potent, and specific pro-drugs to reverse ABCB1-mediated MDR. Our work also provided scientific evidence for the use of M. tenacissima in combinational chemotherapy.
RESUMO
Millions of individuals globally consume traditional herbal medicines (THMs), which contain abundant amounts of linear furanocoumarins. Linear furanocoumarins (i.e., 8-methoxypsoralen, 5-methoxypsoralen, and isopimpinellin) are inhibitors of cytochrome P450 (CYP) isoenzymes including 1A2, a major enzyme involved in drug metabolism and carcinogen bioactivation. Despite the high consumption of furanocoumarin-containing THMs, no studies have measured the furanocoumarin consumption level that triggers an inhibition to CYP1A2 activity in humans. The first objective was to verify if the potencies of the three furanocoumarins are additive towards the inhibition of CYP1A2 activity in vitro using concentration-addition and whole-mixture chemical-mixture-assessment models. A second objective was to determine the benchmark dose (BMD) with the mixtures of furanocoumarin oral doses, expressed as 8-MOP equivalents, and to assess the in vivo CYP1A2 activity, expressed as inhibition percentages. The in vitro results indicated that the three furanocoumarin inhibitory potencies were additive in the THM extracts, validating the use of the concentration-addition model in total furanocoumarin dose-equivalent calculations. Using the USEPA BMD software, the BMD was 18.9 µg 8-MOP equivalent/kg body weight. This information is crucial for furanocoumarin-related health-assessment studies and the regulation of THMs. Further studies should be performed for the remaining major metabolic enzymes to complete the safety profile of furanocoumarin-containing THMs and to provide accurate warning labelling.
RESUMO
Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults, with increasing incidence with age and a generally poor prognosis. Almost 20% of AML patients express mutant isocitrate dehydrogenase 2 (mIDH2), which leads to the accumulation of the carcinogenic metabolite 2-hydroxyglutarate (2-HG), resulting in poor prognosis. Thus, global institutions have been working to develop mIDH2 inhibitors. SH1573 is a novel mIDH2 inhibitor that we independently designed and synthesised. We have conducted a comprehensive study on its pharmacodynamics, pharmacokinetics and safety. First, SH1573 exhibited a strong selective inhibition of mIDH2 R140Q protein, which could effectively reduce the production of 2-HG in cell lines, serum and tumors of an animal model. It could also promote the differentiation of mutant AML cell lines and granulocytes in PDX models. Then, it was confirmed that SH1573 possessed characteristics of high bioavailability, good metabolic stability and wide tissue distribution. Finally, toxicological data showed that SH1573 had no effects on the respiratory system, cardiovascular system and nervous system, and was genetically safe. This research successfully promoted the approval of SH1573 for clinical trials (CTR20200247). All experiments demonstrated that, as a potential drug against mIDH2 R140Q acute myeloid leukaemia, SH1573 was effective and safe.
RESUMO
Remdesivir (RDV) is the only US Food and Drug Administration (FDA)-approved drug for treating COVID-19. However, RDV can only be given by intravenous route, and there is a pressing medical need for oral antivirals. Significant evidence suggests that the role of the parent nucleoside GS-441524 in the clinical outcomes of RDV could be largely underestimated. We performed an in vitro and in vivo drug metabolism and pharmacokinetics (DMPK) assessment to examine the potential of RDV, and particularly GS-441524, as oral drugs. In our in vitro assessments, RDV exhibited prohibitively low stability in human liver microsomes (HLMs, t 1/2 = â¼1 min), with the primary CYP-mediated metabolism being the mono-oxidation likely on the phosphoramidate moiety. This observation is poorly aligned with any potential oral use of RDV, though in the presence of cobicistat, the microsomal stability was drastically boosted to the level observed without enzyme cofactor NADPH. Conversely, GS-441524 showed excellent metabolic stability in human plasma and HLMs. In further in vivo studies in CD-1 mice, GS-441524 displayed a favorable oral bioavailability of 57%. Importantly, GS-441524 produced adequate drug exposure in the mice plasma and lung, and was effectively converted to the active triphosphate, suggesting that it could be a promising oral antiviral drug for treating COVID-19.
RESUMO
Commiphora myrrha (Nees) Engl. (C. myrrha) resin is the most Middle Eastern herbal medicine used against numerous diseases. After being decocted or macerated, this resin is widely consumed among Saudi Arabian patients who are already under prescribed medication. Despite its popularity, no studies have been reported on potential modulation effects of these resin extracts on drug metabolism. Therefore, we studied C. myrrha resin extracts on the expression of cytochrome P450 (CYP) drug-metabolizing isoenzyme in human hepatocellular carcinoma cell line HepG2. The C. myrrha extracts were prepared by sonication and boiling, resembling the most popular traditional preparations of maceration and decoction, respectively. Both boiled and sonicated aqueous extracts were fingerprinted using high-performance liquid chromatography equipped with ultra-violet detector (HPLC-UVD). The viability of HepG2 cells treated with these aqueous extracts was determined using CellTiter-Glo® assay in order to select the efficient and non-toxic resin extract concentrations for phase-I metabolic CYP isoenzyme expression analysis. The isoenzyme gene and protein expression levels of CYP 2C8, 2C9, 2C19, and 3A4 were assessed using reverse transcription-quantitative polymerase chain reaction and Western blot technologies. The HPLC-UVD fingerprinting revealed different chromatograms for C. myrrha boiled and sonicated aqueous extracts. Both aqueous extracts were toxic to HepG2 cells when tested at concentrations exceeding 150 µg/ml of the dry crude extract. The CYP 2C8, 2C9, and 2C19 mRNA expression levels increased up to 4.0-fold in HepG2 cells treated with either boiled or sonicated C. myrrha aqueous extracts tested between 1 and 30 µg/ml, as compared with the untreated cells. However, CYP3A4 mRNA expression level exceeded the 2.0-fold cutoff when the cells were exposed to 30 µg/ml of C. myrrha extracts. The up-regulation of CYP mRNA expression levels induced by both boiled and sonicated C. myrrha aqueous extracts was confirmed at the CYP protein expression levels. In conclusion, both sonicated and boiled C. myrrha aqueous extracts modulate CYP 2C8, 2C9, 2C19, and 3A4 gene expression at clinically-relevant concentrations regardless of preparation methods. Further in vitro and in vivo experiments are required for CYP isoenzyme activity assessment and the establishment of herb-drug interaction profile for these traditional medicinal resin extracts.
RESUMO
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
RESUMO
Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carcinoma and cholangiocarcinoma. In this review, we summarise our current understanding of the function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could be used to target these non-coding transcripts for therapeutic purposes.
RESUMO
Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.
RESUMO
Microbes inhabiting the intestinal tract of humans represent a site for xenobiotic metabolism. The gut microbiome, the collection of microorganisms in the gastrointestinal tract, can alter the metabolic outcome of pharmaceuticals, environmental toxicants, and heavy metals, thereby changing their pharmacokinetics. Direct chemical modification of xenobiotics by the gut microbiome, either through the intestinal tract or re-entering the gut via enterohepatic circulation, can lead to increased metabolism or bioactivation, depending on the enzymatic activity within the microbial niche. Unique enzymes encoded within the microbiome include those that reverse the modifications imparted by host detoxification pathways. Additionally, the microbiome can limit xenobiotic absorption in the small intestine by increasing the expression of cell-cell adhesion proteins, supporting the protective mucosal layer, and/or directly sequestering chemicals. Lastly, host gene expression is regulated by the microbiome, including CYP450s, multi-drug resistance proteins, and the transcription factors that regulate them. While the microbiome affects the host and pharmacokinetics of the xenobiotic, xenobiotics can also influence the viability and metabolism of the microbiome. Our understanding of the complex interconnectedness between host, microbiome, and metabolism will advance with new modeling systems, technology development and refinement, and mechanistic studies focused on the contribution of human and microbial metabolism.
RESUMO
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.
RESUMO
The experimental and clinical data about antibodies against environmental chemical carcinogens and endogenous steroids are represented. The conception of immunomodulation of carcinogens- and steroids-dependent human diseases is proposed. It is postulated that antibodies to polycyclic aromatic hydrocarbons and heterocyclic amines in cooperation with antibodies to cholesterol, sex hormones, mineralo- and glucocorticoids stimulate or inhibit cancer, malformation, cardiovascular and autoimmune diseases depending on their personal combination. It is recommended to use immunoassay of these antibodies for the human diseases prediction. The alternative approaches for prevention using the probiotics transformed by anti-carcinogen antibodies are substantiated.
RESUMO
Drug-metabolizing enzymes, transporters, and nuclear receptors are essential for the absorption, distribution, metabolism, and excretion (ADME) of drugs and xenobiotics. MicroRNAs participate in the regulation of ADME gene expression via imperfect complementary Watson-Crick base pairings with target transcripts. We have previously reported that Cytochrome P450 3A4 (CYP3A4) and ATP-binding cassette sub-family G member 2 (ABCG2) are regulated by miR-27b-3p and miR-328-3p, respectively. Here we employed our newly established RNA bioengineering technology to produce bioengineered RNA agents (BERA), namely BERA/miR-27b-3p and BERA/miR-328-3p, via fermentation. When introduced into human cells, BERA/miR-27b-3p and BERA/miR-328-3p were selectively processed to target miRNAs and thus knock down CYP3A4 and ABCG2 mRNA and their protein levels, respectively, as compared to cells treated with vehicle or control RNA. Consequently, BERA/miR-27b-3p led to a lower midazolam 1'-hydroxylase activity, indicating the reduction of CYP3A4 activity. Likewise, BERA/miR-328-3p treatment elevated the intracellular accumulation of anticancer drug mitoxantrone, a classic substrate of ABCG2, hence sensitized the cells to chemotherapy. The results indicate that biologic miRNA agents made by RNA biotechnology may be applied to research on miRNA functions in the regulation of drug metabolism and disposition that could provide insights into the development of more effective therapies.