Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.105
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(37): 49218-49226, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39240779

RESUMO

As an important biomarker, tumor cell-derived exosomes have substantial application prospects in early cancer screening and diagnosis. However, the unsatisfactory sensitivity and complicated sample pretreatment processes of conventional detection approaches have limited their use in clinical diagnosis. Nanopore sensors, as a highly sensitive, label-free, single-molecule technology, are widely utilized in molecule and bioparticle detection. Nevertheless, the exosome capture rate through nanopores is extremely low due to the low surface charge densities of exosomes and the effects of electrolyte concentration on their structural stability, thereby reducing the detection throughput. Here, we report an approach to improve the capture rate of exosome translocations using silicon nitride (SiNx) nanopores assisted by a slight salt electrolyte gradient. Improvements in exosome translocation event frequency are assessed in electrolyte solutions with different concentration gradients. In the case of asymmetric electrolytes (cis1× PBS and trans0.2 M NaCl, 1× PBS), the event frequency of tumor cell (HepG2)-derived exosome translocations is enhanced by nearly 2 orders of magnitude while maintaining vesicle structure stability. Furthermore, benefiting from the salt gradient effect, tumor cell (AsPC-1 and HCT116)-derived exosome translocations could be discriminated from those of HepG2 cell-derived exosomes. The developed highly sensitive detection method for tumor cell-derived exosomes at the single-particle level provides an approach for early cancer diagnosis.


Assuntos
Exossomos , Nanoporos , Exossomos/química , Exossomos/metabolismo , Humanos , Compostos de Silício/química , Células Hep G2 , Cloreto de Sódio/química , Neoplasias/diagnóstico
2.
Cell Rep Med ; 5(9): 101716, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39241773

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that presents significant challenges for early detection. This study introduces the GlyExo-Capture method for isolating fucosylated extracellular vesicles (Fu-EVs) from serum. We analyze microRNA (miRNA) profiles from Fu-EVs in 88 HCC patients and 179 non-HCC controls using next-generation sequencing (NGS) and identify five miRNAs (hsa-let-7a, hsa-miR-21, hsa-miR-125a, hsa-miR-200a, and hsa-miR-150) as biomarkers for HCC diagnosis. The five-miRNA panel demonstrates exceptional HCC diagnostic performance, with a sensitivity of 0.90 and specificity of 0.92 in a combined cohort of 194 HCC and 412 non-HCC controls, significantly surpassing the performance of alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP). Notably, the miRNA model achieves recall rates of 85.7% and 90.8% for stage 0 and stage A early-stage HCC, respectively, identifies 88.1% of AFP-negative HCC cases, and effectively differentiates HCC from other cancers. This study provides a high-throughput, rapid, and non-invasive approach for early HCC detection.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/genética , MicroRNAs/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Fucose/metabolismo , Idoso , Sequenciamento de Nucleotídeos em Larga Escala/métodos , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/genética
3.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275111

RESUMO

Boron Neutron Capture Therapy (BNCT) is a cancer treatment which combines tumor-selective boron delivery agents with thermal neutrons in order to selectively eradicate cancer cells. In this work, we focus on the early-stage development of carbohydrate delivery agents for BNCT. In more detail, we expand upon our previous GLUT-targeting approach by synthesizing and evaluating the potential embedded in a representative set of fluorinated carbohydrates bearing a boron cluster. Our findings indicate that these species may have advantages over the boron delivery agents in current clinical use, e.g., significantly improved boron delivery capacity at the cellular level. Simultaneously, the carbohydrate delivery agents were found to bind strongly to plasma proteins, which may be a concern requiring further action before progression to in vivo studies. Altogether, this work brings new insights into factors which need to be accounted for if attempting to develop theranostic agents for BNCT based on carbohydrates in the future.


Assuntos
Terapia por Captura de Nêutron de Boro , Carboidratos , Halogenação , Terapia por Captura de Nêutron de Boro/métodos , Carboidratos/química , Humanos , Boro/química , Linhagem Celular Tumoral , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
4.
Med Phys ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287463

RESUMO

BACKGROUND: Targeted radiotherapies with low-energy ions show interesting possibilities for the selective irradiation of tumor cells, a strategy particularly appropriate for the treatment of disseminated cancer. Two promising examples are boron neutron capture therapy (BNCT) and targeted radionuclide therapy with α $\alpha$ -particle emitters (TAT). The successful clinical translation of these radiotherapies requires the implementation of accurate radiation dosimetry approaches able to take into account the impact on treatments of the biological effectiveness of ions and the heterogeneity in the therapeutic agent distribution inside the tumor cells. To this end, biophysical models can be applied to translate the interactions of radiations with matter into biological endpoints, such as cell survival. PURPOSE: The NanOx model was initially developed for predicting the cell survival fractions resulting from irradiations with the high-energy ion beams encountered in hadrontherapy. We present in this work a new implementation of the model that extends its application to irradiations with low-energy ions, as the ones found in TAT and BNCT. METHODS: The NanOx model was adapted to consider the energy loss of primary ions within the sensitive volume (i.e., the cell nucleus). Additional assumptions were introduced to simplify the practical implementation of the model and reduce computation time. In particular, for low-energy ions the narrow-track approximation allowed to neglect the energy deposited by secondary electrons outside the sensitive volume, increasing significantly the performance of simulations. Calculations were performed to compare the original hadrontherapy implementation of the NanOx model with the present one in terms of the inactivation cross sections of human salivary gland cells as a function of the kinetic energy of incident α $\alpha$ -particles. RESULTS: The predictions of the previous and current versions of NanOx agreed for incident energies higher than 1 MeV/n. For lower energies, the new NanOx implementation predicted a decrease in the inactivation cross sections that depended on the length of the sensitive volume. CONCLUSIONS: We reported in this work an extension of the NanOx biophysical model to consider irradiations with low-energy ions, such as the ones found in TAT and BNCT. The excellent agreement observed at intermediate and high energies between the original hadrontherapy implementation and the present one showed that NanOx offers a consistent, self-integrated framework for describing the biological effects induced by ion irradiations. Future work will focus on the application of the latest version of NanOx to cases closer to the clinical setting.

5.
J Colloid Interface Sci ; 678(Pt C): 272-282, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39298978

RESUMO

Cancer immunotherapy has emerged as a potent treatment strategy by harnessing the host immune system to target cancer cells. However, challenges including low tumor vaccine immunogenicity and tumor heterogeneity hinder its clinical efficacy. To address these issues, we propose a novel nanoplatform integrating photothermal material gold nanorods (GNRs) with polyphenols for enhanced immunotherapy efficacy via photothermal therapy. Polyphenols, natural compounds with phenolic hydroxyl groups, are known for their ability to bind tightly to various molecules, making them ideal for antigen capture. We synthesized GNRs modified with polyphenols (GNR-PA and GNR-GA) and demonstrated their ability to induce immunogenic cell death upon laser irradiation, releasing tumor-associated antigens (TAAs). The surface polyphenols on GNRs effectively captured released TAAs to shield them from clearance. In vivo studies confirmed increased accumulation of GNR-GA in lymph nodes and enhanced dendritic cell maturation, leading to promoted effector T cell infiltration into tumors. Furthermore, treatment combined with PD-1/PD-L1 pathway blockade demonstrated potent tumor regression and systemic immunotherapy efficacy. Our findings highlight the potential of this photothermal nanoplatform as a promising strategy to overcome the limitations of current cancer immunotherapy approaches and improve therapeutic outcomes.

6.
Chin Clin Oncol ; 13(Suppl 1): AB015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295333

RESUMO

BACKGROUND: Boron neutron capture therapy (BNCT) is a unique cancer treatment modality that enables precise targeting of tumors at the cellular level. Based on the success observed in nuclear reactors, BNCT now holds promise as a therapeutic approach for treating invasive brain tumors or head and neck cancers. Metastatic spinal tumors have been treated with multidisciplinary interventions such as surgical resection and radiation therapy. Despite recent advantages of radiation therapy, it remains challenging to achieve better quality of life and activity of daily living. The purpose of this study was to evaluate the efficacy and safety of BNCT in metastatic spinal tumor using a mouse model. METHODS: For the in vitro, neutron and photon irradiation was applied to A549 human lung adenocarcinoma cells. The cells were irradiated neutrons with or without p-boronophenylalanine (BPA) 10 µg Boron/mL for a 24-h exposure before neutron irradiation. The difference of biological effect between neutrons and photons was evaluated by colony forming assay. For in vivo, the tumor-bearing mice were intravenously administered BPA (250 mg/kg), followed by measuring biodistribution of boron using inductively coupled plasma atomic emission spectroscopy (ICP-AES). For in vivo BNCT, the mice were randomly assigned to untreated (n=10), neutron irradiation only (n=9), and BNCT groups (n=10). Overall survival and hindlimb function were analyzed. Histopathological examination was also performed to assess the influences of neutron irradiation. RESULTS: Neutron irradiation showed a stronger cell-killing effect than that exhibited by photon irradiation in vitro. For in vivo biodistribution, the highest boron accumulation in the tumor was seen at 2.5-h time point (10.5 µg B/g), with a tumor to normal spinal cord and blood ratios were 3.6 and 2.9, respectively. For the in vivo BNCT, BNCT had significantly prolonged survival (vs. untreated, P=0.002; vs. neutron only, P=0.01, respectively, log-rank test) and preserved mice hindlimb function compared to the other groups (vs. untreated, P<0.001; vs. neutron only, P=0.005, respectively, MANOVA). No adverse events and apparent histopathological changes were observed among three groups. CONCLUSIONS: These findings indicate that BNCT may represent a novel therapeutic option in the management of metastatic spinal tumors.


Assuntos
Terapia por Captura de Nêutron de Boro , Terapia por Captura de Nêutron de Boro/métodos , Animais , Camundongos , Humanos , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Linhagem Celular Tumoral
7.
ACS Appl Bio Mater ; 7(9): 6055-6064, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39224079

RESUMO

Both boron neutron capture therapy (BNCT) and photothermal therapy (PTT) have been applied to tumor treatment in clinical. However, their therapeutic efficacy is limited. For BNCT, the agents not only exhibit poor targeting ability but also permit only a single irradiation session within a course due to significant radiation risks. In the context of PTT, despite enhanced selectivity, the limited photothermal effect fails to meet clinical demands. Hence, the imperative arises to combine these two therapies to enhance tumor-killing capabilities and improve the targeting of BNCT agents by leveraging the advantages of PTT agents. In this study, we synthesized a potential responsive agent by linking 4-mercaptophenylboronic acid (MPBA) and IR-780 dye that served as the agents for BNCT and PTT, respectively, which possesses the dual capabilities of photothermal effects and thermal neutron capture. Results from both in vitro and in vivo research demonstrated that IR780-MPBA effectively inhibits tumor growth through its photothermal effect with no significant toxicity. Furthermore, IR780-MPBA exhibited substantial accumulation in tumor tissues and superior tumor-targeting capabilities compared with MPBA, which demonstrated that IR780-MPBA possesses significant potential as a combined antitumor therapy of PTT and BNCT, presenting a promising approach for antitumor treatments.


Assuntos
Antineoplásicos , Terapia por Captura de Nêutron de Boro , Terapia Fototérmica , Animais , Camundongos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Teste de Materiais , Sobrevivência Celular/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Feminino
8.
Environ Sci Technol ; 58(37): 16376-16385, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39225344

RESUMO

Carbon dioxide (CO2) chemisorption using biphasic solvents has been regarded as a promising approach, but challenges remain in achieving efficient dynamic phase-splitting during practical implementation. To address this, the centrifugal force was innovatively adopted to enhance the coalescence and separation of immiscible fine droplets within the biphasic solvent. The comprehensive evaluation demonstrates that centrifugal phase-splitting shows outstanding separation efficiency (>95%) and excellent applicability for various solvents. Correlation analysis reveals a strong relationship between the rich phase's viscosity, lean phase's residual CO2, and the phase separation efficiency. The time-profile behavior of immiscible droplets, observed through microscope images of phase-splitting, enables the estimation of the growth and coalescence rates of the discrete phase. Industrial-scale process simulation for technical and economic analysis confirms that the total capture cost ($ 42.5/t CO2) can be reduced by ∼22% with the use of biphasic solvents and a centrifugal separator compared to conventional methods. This study introduces a fresh perspective on polarity-induced cluster generation and coagulation-induced separation, offering an effective solution to address the challenges associated with dynamic phase-splitting in biphasic solvents during practical applications.


Assuntos
Dióxido de Carbono , Solventes , Dióxido de Carbono/química , Solventes/química , Centrifugação , Gases/química
9.
Materials (Basel) ; 17(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39336314

RESUMO

Carbon emission reduction and steel slag (SS) treatment are challenges in the steel industry. The accelerated carbonation of SS and carbonated steel slag (CSS) as a supplementary cementitious material (SCM) in cement can achieve both large-scale utilization of SS and CO2 emission reduction, which is conducive to low-carbon sustainable development. This paper presents the utilization status of CSS. The accelerated carbonation route and its effects on the properties of CSS are described. The carbonation reaction of SS leads to a decrease in the average density, an increase in the specific surface area, a refinement of the pore structure, and the precipitation of different forms of calcium carbonate on the CSS surface. Carbonation can increase the specific surface area of CSS by about 24-80%. The literature review revealed that the CO2 uptake of CSS is 2-27 g/100 g SS. The effects of using CSS as an SCM in cement on the mechanical properties, workability, volume stability, durability, environmental performance, hydration kinetics, and microstructure of the materials are also analyzed and evaluated. Under certain conditions, CSS has a positive effect on cement hydration, which can improve the mechanical properties, workability, bulk stability, and sulfate resistance of SS cement mortar. Meanwhile, SS carbonation inhibits the leaching of heavy metal ions from the solid matrix. The application of CSS mainly focuses on material strength, with less attention being given to durability and environmental performance. The challenges and prospects for the large-scale utilization of CSS in the cement and concrete industry are described.

10.
Angew Chem Int Ed Engl ; : e202413249, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349362

RESUMO

Trifluoroborate boronophenylalanine (BBPA) is a boron amino acid analog of 4­boronophenylalanine (BPA) but with a trifluoroborate group (-BF3-) instead of a carboxyl group (-COOH). Clinical studies have shown that 18F-labeled BBPA ([18F]BBPA) can produce high-contrast tumor images in positron emission tomography (PET). Beyond PET imaging, BBPA is a theranostic agent for boron neutron capture therapy (BNCT). Because BBPA possesses an identical chemical structure to BNCT and PET, it can potentially predict the boron concentration for BNCT using [18F]BBPA-PET. The synthesis of BBPA was achieved by selectively fluorinating the α-aminoborate compound, taking advantage of the varying rates of solvolysis of the B-F bond. The study showcased the high-contrast [18F]BBPA-PET imaging in various tumor models, highlighting its broad applicability for both [18F]BBPA-PET and BBPA-BNCT. [18F]BBPA-PET tumor uptake remains consistent across various doses, including those used in BNCT. This enables accurate estimation of the boron concentration in tumors using [18F]BBPA-PET. With its dual boron structure, BBPA increases boron concentration in tumor cells and tumor tissues compared to BPA. Thus, less boron carrier is needed. This study introduces a new theranostic boron carrier that enhances boron accumulation in tumors, predicts boron concentration, and enhances the accuracy and effectiveness of BNCT.

11.
Waste Manag Res ; 42(10): 889-900, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331361

RESUMO

This article investigates the pivotal role of non-hazardous waste landfills in achieving greenhouse gas (GHG) reduction objectives within the European Union (EU).1 This study leverages the experience of key stakeholders in the European landfilling, assesses the efficacy of 'best-in-class' landfill installations, evaluates their potential impact on GHG reduction, and offers concrete recommendations for operators and policymakers. 'Best-in-class' landfills exceed the commonly accepted best practices by implementing all the following practices: (1) an anticipated capture system during the operating phase, (2) prompt installation of the final cover and capture system, with use of an impermeable cover, (3) operated as bioreactor, keeping optimal humidity, (4) adequate maintenance and reporting, (5) recovery of captured gas and (6) treatment of residual methane emissions throughout the waste decomposition process. The main finding is that switching from the actual mix of practices to 'best in class' practices would reduce by ~21 MtCO2eq (-36%) the emissions due to the degradation of waste landfilled between 2024 and 2035, compared to the 'business-as-usual scenario', while also providing a renewable energy source, bringing potential avoided emissions and energy sovereignty. The findings underscore that in addition to implementing the organics diversion and waste reduction targets of the EU, adopting 'best-in class' landfill practices has the potential to bolster energy recovery, mitigate emissions and stimulate biomethane production, thereby advancing the EU environmental goals.


Assuntos
União Europeia , Gases de Efeito Estufa , Instalações de Eliminação de Resíduos , Gases de Efeito Estufa/análise , Metano/análise , Gerenciamento de Resíduos/métodos , Eliminação de Resíduos/métodos , Poluição do Ar/prevenção & controle , Política Ambiental , Poluentes Atmosféricos/análise
12.
Adv Sci (Weinh) ; : e2406577, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324650

RESUMO

Boron neutron capture therapy (BNCT) is a physiologically focused radiation therapy that relies on nuclear capture and fission processes. BNCT is regarded as one of the most promising treatments due to its excellent accuracy, short duration of therapy, and low side effects. The creation of novel boron medicines with high selectivity, ease of delivery, and high boron-effective load is a current research topic. Herein, boron-containing carbon dots (BCDs) and their human serum albumin (HSA) complexes (BCDs-HSA) are designed and synthesized as boron-containing drugs for BNCT. BCDs (10B: 7.1 wt%) and BCDs-HSA exhibited excitation-independent orange fluorescent emission which supported the use of fluorescence imaging for tracking 10B in vivo. The introduction of HSA enabled BCDs-HSA to exhibit good biocompatibility and increased tumor accumulation. The active and passive targeting abilities of BCDs-HSA are explored in detail. Subcutaneous RM-1 tumors and B16-F10 tumors both significantly decrease with BNCT, which consists of injecting BCDs-HSA and then irradiating the area with neutrons. In short, this study provides a novel strategy for the delivery of boron and may broaden the perspectives for the design of boron-containing carbon dots nanomedicine for BNCT.

13.
J Mol Diagn ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332629

RESUMO

Structural variants (SVs) caused by chromosomal rearrangements in common fragile sites (CFS) or LINE retrotranspositions are highly prevalent in colorectal cancer (CRC). However, methodology for targeted detection of these SVs is lacking. We here report the use of formalin-fixed paraffin-embedded targeted locus capture (FFPE-TLC) sequencing as a novel technology for targeted detection of tumor-specific SVs. Analysis of 29 FFPE colorectal tumor and 8 matched normal samples revealed tumor-specific SVs in 24 patients (83%) with a median of 2 SVs per patient (range 1-21). 104 SVs were found in the CFS-associated genes MACROD2, PRKN, FHIT and WWOX in 18 patients (62%) and 39 SVs caused by three LINE transposable elements were found in 15 patients (52%). Tumor-specificity of SVs was independently verified by droplet digital PCR of tumor tissue DNA and their applicability as plasma circulating tumor DNA biomarkers was demonstrated. We conclude that FFPE-TLC sequencing enables the detection of tumor-specific SVs caused by chromosomal rearrangements and LINE retrotranspositions in FFPE tissue. Therefore, FFPE-TLC sequencing facilitates the investigation of the biological and clinical impact of SVs using FFPE material from (retrospective) cohorts of cancer patients and has potential clinical applicability to detect SV biomarkers in the routine molecular diagnostics setting.

14.
Pharm Dev Technol ; : 1-12, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39286881

RESUMO

Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvß3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 µg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 µg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.

15.
Xenobiotica ; 54(8): 492-501, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39329288

RESUMO

Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from in vivo samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both in vitro incubations and clinical samples. It also details the pharmacokinetic (PK) model built to specifically characterise the disposition of individual drug load species from MMAE and MMAF interchain cysteine conjugated ADCs.In vitro deconjugation and hydrolysis rates were similar across both ADCs. Differential clearance of higher loaded species in vivo was pronounced for the MMAE conjugated ADC, while systemic elimination after accounting for deconjugation was similar across drug loads for the MMAF conjugated ADC. This is the first report of affinity capture native LC-MS analysis, and subsequent modelling of deconjugation, hydrolysis and clearance rates of individual drug load species using clinical data from cysteine conjugated ADCs.


Assuntos
Imunoconjugados , Espectrometria de Massas , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/sangue , Cromatografia Líquida , Espectrometria de Massas/métodos , Cisteína , Modelos Biológicos , Espectrometria de Massa com Cromatografia Líquida
16.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337439

RESUMO

Metal-organic frameworks (MOFs) are promising materials for processes such as carbon dioxide (CO2) capture or its storage. In this work, the adsorption of CO2 and nitrogen (N2) in Co3(ndc)3(dabco) MOF (ndc: 2,6-naphthalenedicarboxylate; dabco: 1,4-diazabicyclo[2.2.2]octane) is reported for the first time over the temperature range of 273-323 K and up to 35 bar. The adsorption isotherms are successfully described using the Langmuir isotherm model. The heats of adsorption for CO2 and N2, determined through the Clausius-Clapeyron equation, are 20-27 kJ/mol and 10-11 kJ/mol, respectively. The impact of using pressure and/or temperature swings on the CO2 working capacity is evaluated. If a flue gas with 15% CO2 is fed at 6 bar and 303 K and regenerated at 1 bar and 373 K, 1.58 moles of CO2 can be captured per kg of MOF. The analysis of the multicomponent adsorption of typical flue gas streams (15% CO2 balanced with N2), using the ideal adsorbed solution theory (IAST), shows that at 1 bar and 303 K, the CO2/N2 selectivity is 11.5. In summary, this work reports essential data for the design of adsorption-based processes for CO2 capture using a Co3(ndc)3(dabco) MOF, such as pressure swing adsorption (PSA).


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Nitrogênio , Dióxido de Carbono/química , Nitrogênio/química , Estruturas Metalorgânicas/química , Adsorção , Temperatura , Cobalto/química
17.
Appl Radiat Isot ; 214: 111505, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39270352

RESUMO

This study aims to establish phantom-solution systems suitable for estimating doses in boron neutron capture therapy (BNCT). The phantom containing three typical solutions, H3BO3, LiOH, and Gd(NO3)3·6H2O with different concentrations and nuclide abundances have been studied since the nuclides 10B, 6Li, and 157Gd are capable of absorbing thermal neutrons. The results indicate that all three phantom-solution systems, with suitable concentrations and nuclide abundances, effectively distinguish between the nitrogen dose and the hydrogen dose for dose measurement in BNCT.

18.
Eur J Med Chem ; 279: 116841, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244862

RESUMO

Boron neutron capture therapy (BNCT) is a highly targeted, selective and effective technique to cure various types of cancers, with less harm to the healthy cells. In principle, BNCT treatment needs to distribute the 10boron (10B) atoms inside the tumor tissues, selectively and homogeneously, as well as to initiate a nuclear fission reaction by capturing sufficient neutrons which releases high linear energy particles to kill the tumor cells. In BNCT, it is crucial to have high quality boron agents with acceptable bio-selectivity, homogeneous distribution and deliver in required quantity, similar to chemotherapy and other radiotherapy for tumor treatment. Nevertheless, boron drugs currently used in clinical trials yet to meet the full requirements. On the other hand, BNCT processing has opened up the era of renaissance due to the advanced development of the high-quality neutron source and the global construction of new BNCT centers. Consequently, there is an urgent need to use boron agents that have increased biocapacity. Artificial intelligence (AI) tools such as molecular docking and molecular dynamic simulation technologies have been utilized to develop new medicines. In this work, the in silico assessments including bioinformatics assessments of BNCT related tumoral receptor proteins, computational assessments of optimized small molecules of boron agents, are employed to speed up the screening process for boron drugs. The outcomes will be applicable to pave the way for future BNCT that utilizes artificial intelligence. The in silico molecular docking and dynamic simulation results of the optimized small boron agents, such as 4-borono-l-phenylalanine (BPA) with optimized proteins like the L-type amino acid transporter 1 (LTA1, also known as SLC7A5) will be examined. The in silico assessments results will certainly be helpful to researchers in optimizing druggable boron agents for the BNCT application. The clinical status of the optimized proteins, which are highly relevant to cancers that may be treated with BNCT, has been assessed using bioinformatics technology and discussed accordingly. Furthermore, the evaluations of cytotoxicity (IC50), boron uptake and tissue distribution of the optimized ligands 1 and 7 have been presented.

20.
Yakugaku Zasshi ; 144(9): 871-876, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39218654

RESUMO

Boron neutron capture therapy (BNCT) is expected to be a promising next-generation cancer treatment. In 2020, Japan, which has led the research on this treatment modality, was the first country in the world to approve BNCT. The boron agents that have been clinically applied in BNCT include a caged boron compound (mercaptoundecahydrododecaborate: BSH) and a boron-containing amino acid (p-boronophenylalanine: BPA). In particular, the BPA preparation Steboronine® is the only approved drug for BNCT. However, the problem with BPA is that it is poorly retained in the tumor and has very low solubility in water. This cannot be overlooked for BNCT, which requires large amounts of boron in the tumor. The high dosage volume, together with low tumor retention, leads to reduced therapeutic efficacy and increased physical burden on the patient. In the case of BSH, its insufficient penetration into the tumor is problematic. Based on drug delivery system (DDS) technology, we have developed a next-generation boron pharmaceutical superior to Steboronine®. Our approach involves the redevelopment of BPA using innovative ionic liquid formulation technology. Here, we describe previous boron agents and introduce our recent efforts in the development of boron compounds.


Assuntos
Boroidretos , Compostos de Boro , Terapia por Captura de Nêutron de Boro , Sistemas de Liberação de Medicamentos , Neoplasias , Fenilalanina , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Neoplasias/radioterapia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Compostos de Boro/administração & dosagem , Fenilalanina/análogos & derivados , Compostos de Sulfidrila , Desenvolvimento de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA