Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.851
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 541, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003467

RESUMO

BACKGROUND: Meniscal repair should be the gold standard. However, the meniscus is poorly vascularized and even an excellent meniscus repair may not heal. Therefore, numerous studies and systematic reviews have been carried out on platelet-rich plasma (PRP), mesenchymal stem cells (MSCs) and fibrin clots for meniscal augmentation, but the results remain controversial. This systematic review aimed to identify other emerging strategies for meniscal repair augmentation and to assess whether there are different avenues to explore in this field. METHODS: A systematic literature review was conducted in August 2022. PubMed, Ovid MEDLINE(R) all, Ovid All EBM Reviews, Ovid Embase and ISI Web of Science databases were searched. In Vivo animal and human studies concerning the biological augmentation of meniscal lesions by factors other than PRP, MSCs or fibrin clots were included. Cartilage-only studies, previous systematic reviews and expert opinions were excluded. All data were analyzed by two independent reviewers. RESULTS: Of 8965 studies only nineteen studies covering 12 different factors met the inclusion criteria. Eight studies investigated the use of growth factors for meniscal biologic augmentation, such as vascular endothelial growth factor or bone morphogenic protein 7. Five studies reported on cell therapy and six studies focused on other factors such as hyaluronic acid, simvastatin or atelocollagen. Most studies (n = 18) were performed on animal models with gross observation and histological evaluation as outcomes. Polymerase chain reaction and immunohistochemistry were also common. Biomechanical testing was the object of only two studies. CONCLUSIONS: Although several augmentation strategies have been attempted, none has yielded conclusive results, testifying to a lack of understanding with regard to meniscal healing. More research is needed to better understand the pathways that regulate meniscus repair and how to act positively on them. LEVEL OF EVIDENCE: Systematic review of case-control and animal laboratory studies.


Assuntos
Lesões do Menisco Tibial , Humanos , Lesões do Menisco Tibial/cirurgia , Lesões do Menisco Tibial/terapia , Animais , Meniscos Tibiais/cirurgia , Cicatrização/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38955579

RESUMO

Chimeric antigen receptor (CAR T) therapy produced excellent activity in patients with relapsed/refractory B-lineage malignancies. However, extending these therapies to T cell cancers requires overcoming unique challenges. In the recent years, multiple approaches have been developed in preclinical models and some were tested in clinical trials in patients with treatment-refractory T-cell malignanices with promising early results. Here, we review main hurdles impeding the success of CAR T therapy in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL), discuss potential solutions, and summarize recent progress in both preclinical and clinical development of CAR T therapy for these diseases.

3.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955421

RESUMO

BACKGROUND: Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS: We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS: Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION: Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Interleucina-15 , Animais , Camundongos , Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Humanos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Feminino , Subunidade alfa de Receptor de Interleucina-15 , Receptores de Antígenos Quiméricos/imunologia , Linfoma/terapia , Linfoma/imunologia , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/transplante
4.
Leuk Lymphoma ; : 1-14, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975903

RESUMO

To quantify the clinical unmet need of r/r MCL patients who progress on a covalent Bruton tyrosine kinase inhibitor (BTKi), we conducted a systematic review to identify studies that reported overall survival (OS), progression-free survival (PFS), or response outcomes of patients who received a chemo(immunotherapy) ± targeted agent standard therapy (STx) or brexucabtagene autoleucel (brexu-cel) in the post-BTKi setting. Twenty-six studies (23 observational; three trials) reporting outcomes from 2005 to 2022 were included. Using two-stage frequentist meta-analyses, the estimated median PFS/OS for patients treated with an STx was 7.6 months (95% CI: 3.9-14.6) and 9.1 months (95% CI: 7.3-11.3), respectively. The estimated objective response rate (ORR) was 45% (95% CI: 34-57%). For patients treated with brexu-cel, the estimated median PFS/OS was 14.9 months (95% CI: 10.5-21.0) and 32.1 months (95% CI: 25.2-41.2), with a pooled ORR of 89% (95% CI: 86-91%). Our findings highlight a significant unmet need for patients whose disease progresses on a covalent BTKi.

5.
Neuro Oncol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982561

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSION: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.

6.
Stem Cell Res Ther ; 15(1): 202, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971816

RESUMO

BACKGROUND: There is no clear evidence on the comparative effectiveness of bone-marrow mononuclear cell (BMMNC) vs. mesenchymal stromal cell (MSC) stem cell therapy in patients with chronic heart failure (HF). METHODS: Using a systematic approach, eligible randomized controlled trials (RCTs) of stem cell therapy (BMMNCs or MSCs) in patients with HF were retrieved to perform a meta-analysis on clinical outcomes (major adverse cardiovascular events (MACE), hospitalization for HF, and mortality) and echocardiographic indices (including left ventricular ejection fraction (LVEF)) were performed using the random-effects model. A risk ratio (RR) or mean difference (MD) with corresponding 95% confidence interval (CI) were pooled based on the type of the outcome and subgroup analysis was performed to evaluate the potential differences between the types of cells. RESULTS: The analysis included a total of 36 RCTs (1549 HF patients receiving stem cells and 1252 patients in the control group). Transplantation of both types of cells in patients with HF resulted in a significant improvement in LVEF (BMMNCs: MD (95% CI) = 3.05 (1.11; 4.99) and MSCs: MD (95% CI) = 2.82 (1.19; 4.45), between-subgroup p = 0.86). Stem cell therapy did not lead to a significant change in the risk of MACE (MD (95% CI) = 0.83 (0.67; 1.06), BMMNCs: RR (95% CI) = 0.59 (0.31; 1.13) and MSCs: RR (95% CI) = 0.91 (0.70; 1.19), between-subgroup p = 0.12). There was a marginally decreased risk of all-cause death (MD (95% CI) = 0.82 (0.68; 0.99)) and rehospitalization (MD (95% CI) = 0.77 (0.61; 0.98)) with no difference among the cell types (p > 0.05). CONCLUSION: Both types of stem cells are effective in improving LVEF in patients with heart failure without any noticeable difference between the cells. Transplantation of the stem cells could not decrease the risk of major adverse cardiovascular events compared with controls. Future trials should primarily focus on the impact of stem cell transplantation on clinical outcomes of HF patients to verify or refute the findings of this study.


Assuntos
Transplante de Medula Óssea , Insuficiência Cardíaca , Transplante de Células-Tronco Mesenquimais , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Medula Óssea/métodos , Volume Sistólico , Resultado do Tratamento , Células-Tronco Mesenquimais/citologia , Função Ventricular Esquerda
7.
IBRO Neurosci Rep ; 16: 147-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39007089

RESUMO

Disruption of the blood-central nervous system barrier (BCB) is increasingly recognized as a pathological factor in diseases and trauma of the central nervous system. Despite the neuropathological impact, current treatment modalities do not target the BCB; strategies to reconstitute the impaired BCB have been restricted to nutritional and dietary remedies. As an integral cell type in the neurovascular unit, pericytes are crucial to the development, maintenance, and repair of the BCB. As such, pericytes are well poised as cellular agents for reconstitution of the impaired BCB. Here, we summarize recent revelations regarding the role of BCB disruption in diseases and trauma of the central nervous system and highlight how pericytes are harnessed to provide targeted therapeutic effect in each case. This review will also address how recent advances in pericyte derivation strategies can serve to overcome practical hurdles in the clinical use of pericytes.

8.
Front Oncol ; 14: 1425521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007104

RESUMO

Light chain (AL) amyloidosis is a plasma cell disorder distinguished from multiple myeloma (MM) by the degree of organ involvement due to tissue deposition of misfolded proteins. Treatments for AL amyloidosis have largely been borrowed from those developed for patients with MM. High-dose chemotherapy followed by autologous stem cell transplant (ASCT) has historically been associated with the best outcomes. The recent incorporation of daratumumab into up front therapy represents a significant advance and has changed the treatment paradigm, calling into question the role of ASCT. The development of very active novel immune and cellular therapies, specifically B cell maturation antigen (BCMA)-directed therapies, has similarly been transformative for patients with MM and is now being studied in patients with AL amyloidosis. These include chimeric antigen receptor (CAR) T cells, bispecific antibodies, and antibody drug conjugates. Although limited, preliminary data in patients with relapsed and refractory AL amyloidosis are showing promising results, and it is expected that the treatment landscape for AL amyloidosis will continue to evolve. Particular attention to safety, potential for organ recovery, and quality of life will be important when evaluating new treatments and/or treatment paradigms.

9.
Adv Drug Deliv Rev ; : 115395, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004347

RESUMO

A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.

10.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994929

RESUMO

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/radioterapia , Glioblastoma/patologia , Animais , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Camundongos , Microambiente Tumoral/imunologia , Humanos , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Imunomodulação , Feminino
11.
MedComm (2020) ; 5(7): e618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974711

RESUMO

T-cell receptor (TCR) engineered T-cell therapy, unlike chimeric antigen receptor T-cell therapy, relies on the inherent ability of TCRs to detect a wider variety of antigenic epitopes, such as protein fragments found internally or externally on cells. Hence, TCR-T-cell therapy offers broader possibilities for treating solid tumors. However, because of the complicated process of identifying specific antigenic peptides, their clinical application still encounters significant challenges. Thus, we aimed to establish a novel "universal" TCR-T "artificial antigen expression" technique that involves the delivery of the antigen to tumor cells using DSPE-PEG-NY-ESO-1157-165 liposomes (NY-ESO-1 Lips) to express TCR-T-cell-specific recognition targets. In vitro as well as in vivo studies revealed that they could accumulate efficiently in the tumor area and deliver target antigens to activate the tumor-specific cytotoxic T-cell immune response. NY-ESO-1 TCR-T therapy, when used in combination, dramatically curbed tumor progression and extended the longevity of mice. Additionally, PD-1 blockage enhanced the therapeutic effect of the aforementioned therapy. In conclusion, NY-ESO-1 Lips "cursed" tumor cells by enabling antigenic target expression on their surface. This innovative technique presents a groundbreaking approach for the widespread utilization of TCR-T in solid tumor treatment.

12.
Asia Pac J Oncol Nurs ; 11(6): 100495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975609

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy is an immunotherapy that involves genetically modifying the patient's own T cells to express a chimeric antigen receptor, enabling them to recognize and destroy cancer cells. This treatment has revolutionized the prognosis and management of hematological malignancies, leading to a significant increase in long-term survivors. However, there is limited evidence regarding late sequelae and post-treatment care due to the recent emergence of this therapy. The rapid advancement of CAR-T therapies has created opportunities for advanced practice nurses to play a crucial role in coordinating care, providing education, and ensuring the ongoing well-being of survivors. This article provides an overview of the physical, psychosocial, and financial challenges faced by long-term survivors of CAR-T therapy and proposes a comprehensive nursing care plan to address these issues.

13.
Anat Cell Biol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38978508

RESUMO

Stem cells transplantation (SCT) is known as a newfound strategy for multiple sclerosis (MS) treatment. Human umbilical cord mesenchymal stem cells (hUCMSCs) contain various regenerative features. Experimental autoimmune encephalomyelitis (EAE) is a laboratory model of MS. This meta-analysis study was conducted to assess the overall therapeutic effects of hUCMSCs on reduction of clinical score (CS) and restoration of active movement in EAE-induced animals. For comprehensive searching (in various English and Persian databases until May 1, 2024), the main keywords of "Experimental Autoimmune Encephalomyelitis", "Multiple Sclerosis", "Human", "Umbilical Cord", "Mesenchymal", and "Stem Cell" were hired. Collected data were transferred to the citation manager software (EndNote x8) and duplicate papers were merged. Primary and secondary screenings were applied (according to the inclusion and exclusion criteria) and eligible studies were prepared for data collection. CS of two phases of peak and recovery of EAE were extracted as the difference in means and various analyses including heterogeneity, publication bias, funnel plot, and sensitivity index were reported. Meta-analysis was applied by CMA software (v.2), P<0.05 was considered a significant level, and the confidence interval (CI) was determined 95% (95% CI). Six eligible high-quality (approved by ARRIVE checklist) papers were gathered. The difference in means of peak and recovery phases were -0.775 (-1.325 to -0.225; P=0.006; I2=90.417%) and -1.230 (-1.759 to -0.700; P<0.001; I2=93.402%), respectively. The overall therapeutic effects of SCT of hUCMSCs on the EAE cases was -1.011 (95% CI=-1.392 to -0.629; P=0.001). hUCMSCs transplantation through the intravenous route to the animal MS model (EAE) seems a considerably effective procedure for the alleviation of motor defects in both phases of peak and recovery.

14.
EBioMedicine ; 106: 105239, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996766

RESUMO

BACKGROUND: Induction of donor-specific tolerance is a promising approach to achieve long-term graft patency in transplantation with little to no maintenance immunosuppression. Changes to the recipient's T cell receptor (TCR) repertoire are understood to play a pivotal role in the establishment of a robust state of tolerance in chimerism-based transplantation protocols. METHODS: We investigated changes to the TCR repertoires of patients participating in an ongoing prospective, controlled, phase I/IIa trial designed to evaluate the safety and efficacy of combination cell therapy in living donor kidney transplantation. Using high-throughput sequencing, we characterized the repertoires of six kidney recipients who also received bone marrow from the same donor (CKBMT), together with an infusion of polyclonal autologous Treg cells instead of myelosuppression. FINDINGS: Patients undergoing combination cell therapy exhibited partial clonal deletion of donor-reactive CD4+ T cells at one, three, and six months post-transplant, compared to control patients receiving the same immunosuppression regimen but no cell therapy (p = 0.024). The clonality, R20 and turnover rates of the CD4+ and CD8+ TCR repertoires were comparable in both groups, showing our protocol caused no excessive repertoire shift or loss of diversity. Treg clonality was lower in the case group than in control (p = 0.033), suggesting combination cell therapy helps to preserve Treg diversity. INTERPRETATION: Overall, our data indicate that combining Treg cell therapy with CKBMT dampens the alloimmune response to transplanted kidneys in humans in the absence of myelosuppression. FUNDING: This study was funded by the Vienna Science and Technology Fund (WWTF).

15.
Regen Ther ; 26: 315-323, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38983832

RESUMO

Introduction: MEASURE2 (Multisite Evaluation Study on Analytical Methods for Non-clinical Safety Assessment of HUman-derived REgenerative Medical Products 2) is a Japanese experimental public-private partnership initiative that aims to standardize testing methods for tumorigenicity evaluation of human pluripotent stem cell (hPSC)-derived cell therapy products (CTPs). MEASURE2 organized multisite studies to optimize the methodology of the highly efficient culture (HEC) assay, a sensitive culture-based in vitro assay for detecting residual undifferentiated hPSCs in CTPs. Methods: In these multisite studies, 1) the efficiency of colony formation by human induced pluripotent stem cells (hiPSCs) under two different culture conditions and 2) the sorting efficiency of microbeads conjugated to various anti-hPSC markers during hiPSC enrichment were evaluated using samples in which hiPSCs were spiked into hiPSC-derived mesenchymal stem cells. Results: The efficiency of colony formation was significantly higher under culture conditions with the combination of Chroman 1, Emricasan, Polyamines, and Trans-ISRIB (CEPT) than with Y-27632, which is widely used for the survival of hPSCs. Between-laboratory variance was also smaller under the condition with CEPT than with Y-27632. The sorting efficiency of microbeads conjugated with the anti-Tra-1-60 antibody was sufficiently higher (>80%) than those of the other various microbeads investigated. Conclusions: Results of these multisite studies are expected to contribute to improvements in the sensitivity and robustness of the HEC assay, as well as to the future standardization of the tumorigenicity risk assessment of hPSC-derived CTPs.

16.
EBioMedicine ; 106: 105240, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986249

RESUMO

BACKGROUND: Humanized tumour models could be particularly valuable for cancer immunotherapy research, as they may better reflect human-specific aspects of the interfaces between tumour and immune system of human cancer. However, endogenous antitumour immunity in humanized models is still largely undefined. METHODS: We established an autologous humanized mouse tumour model by using NSG mice reconstituted with human immune cells from hematopoietic progenitors and tumours generated from transformed autologous human B cells. We demonstrate growth of solid lymphoid tumours after subcutaneous implantation, infiltration by endogenous human immune cells and immunocompetence of the model. FINDINGS: We found human T cell subsets described in human cancer, including progenitor exhausted (Tpex), terminally exhausted (Tex-term) and tissue-resident (TRM) cells in tumour-bearing humanized mice with accumulation of Tex-term and TRM in the tumour. In addition, we identified tumour-reactive CD8+ T cells through expression of CD137. This subpopulation of de novo arising human CD137+ CD8+ T cells displayed a highly proliferative, fully activated effector and exhausted-like phenotype with enhanced expression of activation and exhaustion markers like PD-1, CD39, CD160, TIM-3, TIGIT and TOX, the senescence marker CD57 (B3GAT1) and cytolytic effector molecules such as PRF1, GZMH and NKG7. Moreover, these CD137+ CD8+ T cells exhibited tumour-specific clonal expansion and presented signature overlap with tumour-reactive CD8+ T cells described in human cancer. We demonstrate superior anticancer activity of this activated and exhausted-like human CD8+ T cell subset by adoptive transfer experiments using recipients bearing autologous human tumours. Mice adoptively transferred with CD137+ CD8+ T cells showed reduced tumour growth and higher CD8+ T cell tumour infiltration, correlating with control of human tumours. INTERPRETATION: We established an immunocompetent humanized tumour model, providing a tool for immunotherapy research and defined effective anticancer activity of human effector CD8+ T cells with an activated and exhausted-like phenotype, supporting clinical exploration of such cells in adoptive T cell therapies. FUNDING: Swiss Cancer Research foundation.

17.
Front Immunol ; 15: 1383136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979422

RESUMO

Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.


Assuntos
Antígeno de Maturação de Linfócitos B , Quimiocina CXCL12 , Imunoterapia Adotiva , Células Matadoras Naturais , Mieloma Múltiplo , Receptores CXCR4 , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Quimiocina CXCL12/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica
18.
Int J Ophthalmol ; 17(7): 1363-1369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026924

RESUMO

Retinitis pigmentosa (RP) is a group of genetic disorders characterized by progressive degeneration of photoreceptors and retinal pigment epithelium (RPE) cells. Its main clinical manifestations include night blindness and progressive loss of peripheral vision, making it a prevalent debilitating eye disease that significantly impacts patients' quality of life. RP exhibits significant phenotypic and genetic heterogeneity. For instance, numerous abnormal genes are implicated in RP, resulting in varying clinical presentations, disease progression rates, and pathological characteristics among different patients. Consequently, gene therapy for RP poses challenges due to these complexities. However, stem cells have garnered considerable attention in the field of RPE therapy since both RPE cells and photoreceptors can be derived from stem cells. In recent years, a large number of animal experiments and clinical trials based on stem cell transplantation attempts, especially cord blood mesenchymal stem cell (MSC) transplantation and bone marrow-derived MSC transplantation, have confirmed that stem cell therapy can effectively and safely improve the outer retinal function of the RP-affected eye. However, stem cell therapy also has certain limitations, such as the fact that RP patients may involve multiple types of retinal cytopathia, which brings great challenges to stem cell transplantation therapy, and further research is needed to solve various problems faced by this approach in the clinic. Through comprehensive analysis of the etiology and histopathological changes associated with RP, this study substantiates the efficacy and safety of stem cell therapy based on rigorous animal experimentation and clinical trials, while also highlighting the existing limitations that warrant further investigation.

19.
Front Oncol ; 14: 1398078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026972

RESUMO

Chimeric antigen receptor-modified T cell (CAR T-cell) therapy has revolutionized the management of hematological malignancies. In addition to impressive malignancy-related outcomes, CAR T-cell therapy has significant toxicity-related adverse events, including cytokine release syndrome (CRS), immune effector cell associated neurotoxicity syndrome (ICANS), immune effector cell-associated hematotoxicity (ICAHT), and opportunistic infections. Different CAR T-cell targets have different epidemiology and risk factors for infection, and these targets result in different long-term immunodeficiency states due to their distinct on-target and off- tumor effects. These effects are exacerbated by the use of multimodal immunosuppression in the management of CRS and ICANS. The most effective course of action for managing infectious complications involves determining screening, prophylactic, and monitoring strategies and understanding the role of immunoglobulin replacement and re-vaccination strategies. This involves considering the nature of prior immunomodulating therapies, underlying malignancy, the CAR T-cell target, and the development and management of related adverse events. In conclusion, we now have an increasing understanding of infection management for CAR T-cell recipients. As additional effector cells and CAR T-cell targets become available, infection management strategies will continue to evolve.

20.
J Immunother Cancer ; 12(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029925

RESUMO

BACKGROUND: Natural killer (NK) cell therapy is considered an attractive and safe strategy for anticancer therapy. Nevertheless, when autologous or allogenic NK cells are used alone, the clinical benefit has been disappointing. This is partially due to the lack of target specificity. Recently, CD19-specific chimeric antigen receptor (CAR)-NK cells have proven to be safe and potent in patients with B-cell tumors. However, the generation of CAR-NK cells is a complicated manufacturing process. We aim at developing a targeted NK cell therapy without the need for cellular genetic modifications. We took advantage of the natural expression of the IgG Fc receptor CD16a (FcγRIIIa) to induce strong antigen-specific effector functions through antibody-dependent cell-mediated cytotoxicity (ADCC). We have generated the new technology "Pin", which enables the arming of modified monoclonal antibodies (mAbs) onto the CD16a of ex vivo expanded NK (eNK) cells. Methods Ex vivo eNK were prepared from umbilical cord blood cells and expanded using interleukin (IL)-2/IL-15 and Epstein-Barr virus (EBV)-transformed B-lymphoblastoid feeder cells. mAbs were engineered with four substitutions called Pin mutations to increase their affinity to CD16a. eNK were incubated with anti-CD20 or anti-CD19 Pin-mAbs to generate "armed" eNK and were used to assess effector functions in vitro on cancer cell lines, lymphoma patient cells and in vivo. RESULTS: CD16a/Pin-mAb interaction is stable for several days and Pin-mAb eNK inherit the mAb specificity and exclusively induce ADCC against targets expressing the cognate antigen. Hence, Pin-mAbs confer long-term selectivity to eNK, which allows specific elimination of the target cells in several in vivo mouse models. Finally, we showed that it is possible to arm eNK with at least two Pin-mAbs simultaneously, to increase efficacy against heterogenous cancer cell populations. CONCLUSIONS: The Pin technology provides an off-the-shelf NK cell therapy platform to generate CAR-like NK cells, without genetic modifications, that easily target multiple tumor antigens.


Assuntos
Células Matadoras Naturais , Receptores de IgG , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Camundongos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Antígenos CD19/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA