Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Trace Elem Med Biol ; 86: 127507, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39137608

RESUMO

Inorganic arsenic (iAs)-induced urothelial carcinoma (UC) develops into a poor-prognosis malignancy. Arsenic-induced oxidative stress contributes to circadian rhythm disruption altered metabolism. Glutamine anaplerosis is a common metabolic feature of rapidly proliferating malignant cells, in which glutaminase (GLS) is a key enzyme in this process. Therefore, this study intends to determine if arsenic-induced oxidative stress can alter circadian rhythms and promote glutamine anaplerosis. Exonic expression of core circadian molecules (CLOCK, ARNTL, and NR1D1) and GLS in varying grades of UC were assessed using 423 bladder cancer samples from the TCGA Urothelial Bladder Cancer (BLCA) dataset. The levels of circadian proteins and metabolic markers in 44 UC patients from non-black foot disease (BFD) and BFD areas were detected by immunohistochemistry. In vitro and in vivo experiments elucidated the regulatory mechanisms of arsenic-mediated circadian disturbance and metabolic alteration. Public database analysis showed that ARNTL, NR1D1, and GLS exhibited greater expression in more high-grade UC. Strong immunoreactivity for BMAL1, GLS, and low levels of NR1D1 were found in malignant urothelial lesions, especially in arsenic-exposed UC. Arsenic-induced overexpression of BMAL1 and GLS involves activation of NADH: quinone oxidoreductase 1 (NQO1), continuously altering the NADH oscillations to promote glutamate metabolism in SV-HUC-1, T24 and BFTC-905 cells. These phenomenon were also demonstrated in the urothelium of arsenic-exposed animals. The present findings highlight the potential clinical significance of BMAL1 and GLS in UC in the BFD region. Furthermore, these results suggest that arsenic interferes with circadian rhythm and glutamine anaplerosis by NADH oscillatory imbalance in urothelial cells and urothelial cancer cells, predisposing them to malignant development.

2.
Int J Mol Med ; 54(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092582

RESUMO

Due to the addictive qualities of tobacco products and the compulsive craving and dependence associated with their use, nicotine dependence continues to be a serious public health concern on a global scale. Despite awareness of the associated health risks, nicotine addiction contributes to numerous acute and chronic medical conditions, including cardiovascular disease, respiratory disorders and cancer. The nocturnal secretion of pineal melatonin, known as the 'hormone of darkness', influences circadian rhythms and is implicated in addiction­related behaviors. Melatonin receptors are found throughout the brain, influencing dopaminergic neurotransmission and potentially attenuating nicotine­seeking behavior. Additionally, the antioxidant properties of melatonin may mitigate oxidative stress from chronic nicotine exposure, reducing cellular damage and lowering the risk of nicotine­related health issues. In addition to its effects on circadian rhythmicity, melatonin acting via specific neural receptors influences sleep and mood, and provides neuroprotection. Disruptions in melatonin signaling may contribute to sleep disturbances and mood disorders, highlighting the potential therapeutic role of melatonin in addiction and psychiatric conditions. Melatonin may influence neurotransmitter systems involved in addiction, such as the dopaminergic, glutamatergic, serotonergic and endogenous opioid systems. Preclinical studies suggest the potential of melatonin in modulating reward processing, attenuating drug­induced hyperactivity and reducing opioid withdrawal symptoms. Chronotherapeutic approaches targeting circadian rhythms and melatonin signaling show promise in smoking cessation interventions. Melatonin supplementation during periods of heightened nicotine cravings may alleviate withdrawal symptoms and reduce the reinforcing effects of nicotine. Further research is required however, to examine the molecular mechanisms underlying the melatonin­nicotine association and the optimization of therapeutic interventions. Challenges include variability in individual responses to melatonin, optimal dosing regimens and identifying biomarkers of treatment response. Understanding these complexities could lead to personalized treatment strategies and improve smoking cessation outcomes.


Assuntos
Ritmo Circadiano , Melatonina , Tabagismo , Melatonina/metabolismo , Humanos , Tabagismo/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Nicotina/efeitos adversos
3.
Eur J Neurosci ; 60(4): 4586-4596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007275

RESUMO

N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark that regulates the fate of RNA molecules. Recent studies have revealed a bidirectional interaction between m6A modification and the circadian clock. However, the precise temporal dynamics of m6A global enrichment in the central circadian pacemaker have not been fully elucidated. Our study investigates the relationship between FTO demethylase and molecular clocks in primary cells of the suprachiasmatic nucleus (SCN). In addition, we examined the effects of lipopolysaccharide (LPS) on Fto expression and the role of FTO in LPS-induced reactive oxygen species (ROS) production in primary SCN cell culture. We observed circadian rhythmicity in the global m6A levels, which mirrored the rhythmic expression of the Fto demethylase. Silencing FTO using siRNA reduced the mesor of Per2 rhythmicity in SCN primary cells and extended the period of the PER2 rhythm in SCN primary cell cultures from PER2::LUC mice. When examining the immune response, we discovered that exposure to LPS upregulated global m6A levels while downregulating Fto expression in SCN primary cell cultures. Interestingly, we found a loss of circadian rhythmicity in Fto expression following LPS treatment, indicating that the decrease of FTO levels may contribute to m6A upregulation without directly regulating its circadian rhythm. To explore potential protective mechanisms against neurotoxic inflammation, we examined ROS production following LPS treatment in SCN primary cell cultures pretreated with FTO siRNA. We observed a time-dependent pattern of ROS induction, with significant peak at 32 h but not at 20 h after synchronization. Silencing the FTO demethylase abolished ROS induction following LPS exposure, supporting the hypothesis that FTO downregulation serves as a protective mechanism during LPS-induced neuroinflammation in SCN primary cell cultures.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Relógios Circadianos , Lipopolissacarídeos , Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Camundongos , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Relógios Circadianos/genética , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias/metabolismo , Metilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Células Cultivadas , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , RNA/genética , RNA/metabolismo , Metilação de RNA
4.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062777

RESUMO

Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.


Assuntos
Envelhecimento , Produtos Biológicos , Neoplasias , Humanos , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Animais , Relógios Circadianos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
5.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063035

RESUMO

Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype.


Assuntos
Ritmo Circadiano , Mitocôndrias , Consumo de Oxigênio , Humanos , Mitocôndrias/metabolismo , Ritmo Circadiano/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Respiração Celular , Linhagem Celular Tumoral , Fosforilação Oxidativa
6.
Trends Neurosci ; 47(8): 583-592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39054162

RESUMO

Intellectual disability is defined as limitations in cognitive and adaptive behavior that often arise during development. Disordered sleep is common in intellectual disability and, given the importance of sleep for cognitive function, it may contribute to other behavioral phenotypes. Animal models of intellectual disability, in particular of monogenic intellectual disability syndromes (MIDS), recapitulate many disease phenotypes and have been invaluable for linking some of these phenotypes to specific molecular pathways. An emerging feature of MIDS, in both animal models and humans, is the prevalence of metabolic abnormalities, which could be relevant for behavior. Focusing on specific MIDS that have been molecularly characterized, we review sleep, circadian, and metabolic phenotypes in animal models and humans and propose that altered metabolic state contributes to the abnormal sleep/circadian phenotypes in MIDS.


Assuntos
Deficiência Intelectual , Transtornos do Sono-Vigília , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Animais , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/fisiopatologia , Modelos Animais de Doenças
7.
Cancers (Basel) ; 16(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39061191

RESUMO

This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.

8.
Nutr Rev ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954563

RESUMO

Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.

9.
Proc Natl Acad Sci U S A ; 121(30): e2319782121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008664

RESUMO

Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.


Assuntos
Ritmo Circadiano , Glicólise , Fosforilação Oxidativa , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Ritmo Circadiano/fisiologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Fibroblastos/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Rev. Bras. Neurol. (Online) ; 60(2): 5-12, abr.-jun. 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1565978

RESUMO

Epilepsy's cyclic nature, increasingly quantified through advancements in continuous electroencephalography (cEEG), reveals robust seizure cycles including circadian, multidien, and circannual rhythms. Understanding these cycles' mechanisms and clinical implications, such as seizure forecasting and optimized treatment timing, is crucial. Despite historical observations, detailed analysis of seizure timing cycles has become feasible only recently, necessitating further research to confirm generalizability and clinical relevance. This paper reviews current literature on circadian rhythms in epilepsy, focusing on temporal seizure patterns and identifying knowledge gaps. A comprehensive review of studies, primarily using PubMed, synthesizes key findings from 20 studies on the temporal dynamics of epileptic activity. Research shows consistent circadian rhythms in seizure activity, with distinct daily peaks. Seizures often follow daily patterns, termed "seizure rush hours," with specific seizure types linked to particular times and influenced by sleep-wake cycles. These findings underscore the importance of understanding temporal patterns in epilepsy. Understanding these rhythms can enhance seizure prediction, diagnosis, and personalized treatment strategies. The significant role of biological rhythms suggests that tailored treatments based on individual circadian profiles could improve patient outcomes and quality of life. Further research is essential to elucidate the mechanisms driving these influences and validate findings across diverse cohorts.


A natureza cíclica da epilepsia, cada vez mais quantificada por meio dos avanços na eletroencefalografia contínua (cEEG), revela ciclos de crises epilépticas (CE) robustos, incluindo ritmos circadianos, multidiários e circanuais. Compreender os mecanismos e as implicações clínicas desses ciclos, como a previsão de CE e a otimização do momento do tratamento, é crucial. Apesar das observações históricas, a análise detalhada dos ciclos de tempo das CE tornou-se viável apenas recentemente, exigindo mais pesquisas para confirmar a generalização e a relevância clínica. Este artigo revisa a literatura atual sobre ritmos circadianos na epilepsia, focando nos padrões temporais das CE e identificando lacunas no conhecimento. Uma revisão abrangente dos estudos, principalmente utilizando o PubMed, sintetiza os principais achados de 20 estudos sobre a dinâmica temporal da atividade epiléptica. A pesquisa mostra ritmos circadianos consistentes na atividade das CE, com picos diários distintos. As CE frequentemente seguem padrões diários, denominados "horários de pico das convulsões" ("seizure rush hours"), com tipos específicos de CE vinculados a determinados horários e influenciados pelos ciclos sono-vigília. Esses achados destacam a importância de entender os padrões temporais na epilepsia. Compreender esses ritmos pode melhorar a previsão, o diagnóstico e as estratégias de tratamento personalizado das CE. O papel significativo dos ritmos biológicos sugere que tratamentos personalizados com base nos perfis circadianos individuais podem melhorar os resultados e a qualidade de vida dos pacientes. Mais pesquisas são essenciais para elucidar os mecanismos que impulsionam essas influências e validar os achados em diversas coortes.

11.
Phytomedicine ; 131: 155805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851097

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE: The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS: A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid ß-protein (Aß) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS: Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aß, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION: Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipocampo , Melatonina , Animais , Melatonina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Masculino , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Glicemia/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Estreptozocina , Peptídeos beta-Amiloides/metabolismo
12.
Annu Rev Immunol ; 42(1): 83-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941606

RESUMO

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.


Assuntos
Ritmo Circadiano , Neoplasias , Humanos , Ritmo Circadiano/imunologia , Animais , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Imunidade Inata , Imunidade Adaptativa
13.
J Hazard Mater ; 476: 134912, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38909469

RESUMO

Acrylamide (ACR) is a known carcinogen and neurotoxin. It is chronically consumed in carbohydrate-rich snacks processed at high temperatures. This calls for systematic research into the effects of ACR intake, best performed in an experimental model capable of detecting symptoms of its neurotoxicity at both high and low doses. Here, we study the influence of 10 µg/g (corresponding to the concentrations found in food products) and, for comparison, 60, 80 and 110 µg/g dietary ACR, on the fruit fly Drosophila melanogaster. We show that chronic administration of ACR affects lifespan, activity level and, most importantly, the daily and circadian pattern of locomotor activity of Drosophila. ACR-treated flies show well-defined and concentration-dependent symptoms of ACR neurotoxicity; a reduced anticipation of upcoming changes in light conditions and increased arrhythmicity in constant darkness. The results suggest that the rhythm-generating neural circuits of their circadian oscillator (biological clock) are sensitive to ACR even at low concentrations if the exposure time is sufficiently long. This makes the behavioural readout of the clock, the rhythm of locomotor activity, a useful tool for studying the adverse effects of ACR and probably other compounds.


Assuntos
Acrilamida , Drosophila melanogaster , Animais , Acrilamida/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Relógios Biológicos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Masculino , Dieta , Feminino , Longevidade/efeitos dos fármacos
14.
Trends Cancer ; 10(8): 671-672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942640

RESUMO

Does time of day matter for cancer immunotherapy? Whereas the concept of optimizing the time of treatment is well documented for chemotherapy, whether it applies to immunotherapy, a revolutionizing treatment exploiting the power of immune cells to control tumors, has recently been addressed in a study published in Cell.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Animais
15.
Mol Neurobiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702566

RESUMO

Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.

16.
Nutrients ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794659

RESUMO

Caffeine has attracted significant attention from researchers in the sports field due to its well-documented ergogenic effects across various athletic disciplines. As research on caffeine continues to progress, there has been a growing emphasis on evaluating caffeine dosage and administration methods. However, investigations into the optimal timing of caffeine intake remain limited. Therefore, this narrative review aimed to assess the ergogenic effects of caffeine administration at different times during the morning (06:00 to 10:00) and evening (16:00 to 21:00). The review findings suggest that circadian rhythms play a substantial role in influencing sports performance, potentially contributing to a decline in morning performance. Caffeine administration has demonstrated effectiveness in mitigating this phenomenon, resulting in ergogenic effects and performance enhancement, even comparable to nighttime levels. While the specific mechanisms by which caffeine regulates circadian rhythms and influences sports performance remain unclear, this review also explores the mechanisms underlying caffeine's ergogenic effects, including the adenosine receptor blockade, increased muscle calcium release, and modulation of catecholamines. Additionally, the narrative review underscores caffeine's indirect impact on circadian rhythms by enhancing responsiveness to light-induced phase shifts. Although the precise mechanisms through which caffeine improves morning performance declines via circadian rhythm regulation necessitate further investigations, it is noteworthy that the timing of caffeine administration significantly affects its ergogenic effects during exercise. This emphasizes the importance of considering caffeine intake timing in future research endeavors to optimize its ergogenic potential and elucidate its mechanisms.


Assuntos
Desempenho Atlético , Cafeína , Ritmo Circadiano , Substâncias para Melhoria do Desempenho , Cafeína/farmacologia , Cafeína/administração & dosagem , Humanos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Desempenho Atlético/fisiologia , Substâncias para Melhoria do Desempenho/farmacologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Fatores de Tempo , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Exercício Físico/fisiologia
17.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739791

RESUMO

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fotossíntese , Fotossíntese/genética , Relógios Circadianos/genética , Biotecnologia/métodos , Cianobactérias/genética , Cianobactérias/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
18.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558188

RESUMO

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Assuntos
Medula Óssea , Relógios Circadianos , Camundongos , Animais , Medula Óssea/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética
19.
JTO Clin Res Rep ; 5(4): 100659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38596201

RESUMO

Introduction: Previous studies reported an association between immune checkpoint inhibitor infusion timing and the treatment effect in metastatic NSCLC. The present study assessed the association between durvalumab infusion timing and survival outcomes in patients with locally advanced NSCLC. Methods: Patients receiving durvalumab after chemoradiotherapy for locally advanced NSCLC at a single institution were retrospectively analyzed, and the association of the proportion of durvalumab infusions greater than or equal to 20% versus less than 20% after 3 PM with progression-free survival (PFS) and overall survival was assessed. Results: A total of 82 patients were included, with a median age of 69 years (interquartile range, 62-74 years); of these, 67 patients (82%) were of male sex, and 78 patients (95%) had a history of smoking. The median number of durvalumab infusions per patient was 16 (interquartile range, 8-24). Patients with at least 20% of their durvalumab infusions after 3 PM (n = 12/82, 15%) had a significantly shorter PFS than those who did not (median: 7.4 mo versus not available [NA]; hazard ratio [HR], 2.43; 95% confidence interval [CI]: 1.11-5.34, p = 0.027), whereas overall survival was shorter among the former compared with the latter group (median: 22.4 versus NA; HR, 1.80; 95% CI: 0.73-4.42, p = 0.20). In addition, both backward stepwise multivariable analysis and propensity score-matching analysis revealed that receiving at least 20% of durvalumab infusions after 3 PM was significantly associated with worse PFS (HR, 2.54; 95% CI: 1.03-5.67, p = 0.047; and HR, 4.64; 95% CI: 1.95-11.04; p < 0.001, respectively). Conclusions: The time of day of durvalumab infusions may impact survival outcomes in patients with locally advanced NSCLC.

20.
J Neuroimmune Pharmacol ; 19(1): 4, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305948

RESUMO

Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.


Assuntos
Depressão , Lipopolissacarídeos , Animais , Ratos , Depressão/induzido quimicamente , Hipocampo , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Músculos/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA