Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathol Int ; 72(12): 589-605, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36349994

RESUMO

The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Extra-Hepáticos , Colangiocarcinoma , Animais , Camundongos , Humanos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Ductos Biliares Extra-Hepáticos/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Pigmentos Biliares
2.
Semin Pediatr Surg ; 31(6): 151235, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36442454

RESUMO

The two main biliary pathologies in paediatric practice, biliary atresia and choledochal malformations (CM), have their origins within prenatal life. Nevertheless, the actual mechanisms remain elusive with many unanswered questions. The extrahepatic bile duct develops as a funnel-like structure emerging from the foregut from about 3-4 weeks of gestation into the mesenchyme of the septum transversum. The cranial elements of this contain hepatoblasts - the precursors to the two key cell lines that will become hepatocytes and biliary epithelial cells. The intrahepatic bile ducts develop separately and emerge from a complex process involving the ductal plate surrounding the in-growing portal venous system from about the 7-8th week of gestation. A developmental defect at some point(s) in this process may be the cause of at least some variants of BA - the Biliary Atresia Splenic Malformation syndrome particularly - though evidence in the more common isolated BA is much more circumstantial. Similarly, some types of choledochal malformation, specifically the cystic type of CM, are invariably present during prenatal life although again an actual aetiological mechanism remains elusive.


Assuntos
Ductos Biliares Extra-Hepáticos , Atresia Biliar , Gravidez , Feminino , Humanos , Criança , Atresia Biliar/etiologia , Atresia Biliar/patologia , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/anormalidades , Ductos Biliares Intra-Hepáticos/patologia
3.
Dev Biol ; 458(2): 228-236, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31697936

RESUMO

Significant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms directing endodermal progenitors towards the HPD fate and emphasize the tissue specific requirement of Hhex during development.


Assuntos
Hepatopâncreas/embriologia , Hepatopâncreas/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Padronização Corporal/fisiologia , Sistema Digestório/metabolismo , Embrião não Mamífero/metabolismo , Endoderma/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatopâncreas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA