Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126061

RESUMO

Expanding on earlier observations, we show that many melanin materials, in vitro synthesized from a wide range of precursors, can be fractionated into a dark-colored precipitate and a near-colorless, dispersible fraction. The dispersible fractions exhibited absorbance in the UVA and UVB range of the electromagnetic spectrum, but none in the visible range. In addition, fluorescent properties were associated with all dispersible fractions obtained. FT-IR spectroscopic analyses were performed to compare both types of fractions. Overall, it appears that some of the properties associated with melanin (UV absorbance, fluorescence) may not necessarily reside in the dark-colored portion of melanin, but in a colorless fraction of the material. It remains to be seen whether any of these in vitro observations have any relevance in vivo. However, we raise the possibility that the presence of a colorless fraction within melanin materials and their associated properties may have received inadequate attention. Given the important association between melanin, UV protection, and skin cancer, it is worthwhile to consider this additional aspect of melanin chemistry.


Assuntos
Melaninas , Raios Ultravioleta , Melaninas/química , Melaninas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fluorescência , Humanos
2.
Cureus ; 16(7): e63706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39100033

RESUMO

Background The marine environment, with its rich biodiversity and nutrient-dense ecosystems, offers immense potential for discovering novel pharmaceutical products. Sargassum wightii is a type of brown seaweed that is particularly abundant in sulfated polysaccharides and polyphenolic compounds. These compounds are renowned for their wide range of biological activities. The exploration of such marine resources is crucial for identifying new compounds that can be harnessed for pharmaceutical and nutraceutical applications. Aims and objectives The primary aim of this study is to explore the bioactive compounds present in S. wightii, with a specific focus on its polyphenolic content. Additionally, the study seeks to evaluate the antioxidant properties of the compound. By doing so, the research aims to contribute to the growing body of knowledge on marine bioresources and their potential health benefits. Methods S. wightii samples were collected from the Mandapam coastal region in Rameshwaram, India. The cleaned seaweed was transported to the laboratory, where it was further washed, shade-dried, and ground into a fine powder. The powdered seaweed was then subjected to extraction using four different solvents: n-hexane, dichloromethane, ethyl acetate, and methanol. Phytochemical analyses were conducted on these extracts to identify the presence of various bioactive compounds. The total phenolic content of the extracts was determined, and antioxidant activity was assessed using the phosphomolybdenum method. Functional groups present in the extracts were identified using Fourier Transform Infrared (FT-IR) spectroscopy. Results Among the solvents used, the methanol extract yielded the highest amount of crude extract. Phytochemical analysis revealed a variety of bioactive compounds, with the methanol extract showing a notable presence of polyphenols. The total phenolic content was measured at 1.25 ± 0.6 mg gallic acid equivalence (GAE)/g of extract. The antioxidant activity, assessed through the phosphomolybdenum method, demonstrated significant free radical scavenging capabilities with an IC50 (half maximal inhibitory concentration) value of 68.23 ± 3.5 µg/mL. FT-IR spectroscopy confirmed the presence of functional groups characteristic of polyphenols and other bioactive compounds. Conclusion The study highlights the significant potential of S. wightii as a source of bioactive compounds with substantial antioxidant properties. These findings emphasize the importance of marine algae in the development of pharmaceutical and nutraceutical products, showcasing S. wightii's promising role in health-related applications.

3.
Appl Spectrosc ; : 37028241267326, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095054

RESUMO

Microplastics (MPs), an emerging pollutant, widely co-occur with polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the interaction between MPs and PAHs has been the focus of much attention in recent years. In this study, three types of MPs, i.e., polypropylene, polystyrene, and poly(vinyl chloride), with the same main chain were selected as the adsorbents, with phenanthrene (PHE) as the representative PAHs. The adsorption mechanisms were explored from the perspective of the molecular spectral level using a combination of Fourier transform infrared spectroscopy (FT-IR) with a two-dimensional correlation technique. The adsorption kinetics results showed that the adsorption of PHE on the three MPs was dominated by chemisorption. However, the FT-IR analysis results indicated that no new covalent bond was created during the adsorption process. Based on the above research, a generalized two-dimensional (2D) correlation spectral technique was employed to investigate the sequence of functional group changes during the adsorption process for different MPs. Furthermore, the hybrid 2D correlation spectral technique explored the effect of side groups attached to the main chain molecules of MPs on adsorption. The results showed that for all three MPs, the functional groups in the side chain have a higher affinity for PHE, which is due to their higher hydrophobicity. This study provides a feasible way to analyze the adsorption of pollutants on MPs, and the results are important for understanding the adsorption interaction between PAHs and MPs in the aquatic environment.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124432, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733914

RESUMO

Iron-phosphate glasses are a wide group of materials with a wide range of applications. Among others, they are promising materials in toxic waste vitrification because of their high chemical durability and relatively low processing temperature and time. They are a novel group of glasses that are considered in the vitrification of radioactive waste, especially those that cannot be treated using conventional borosilicate ones. Since strontium isotopes are one of the main fission products present in the waste, the influence of Sr on the structural properties of the glasses is an important factor. Strontium-containing iron-phosphate glasses were subjected to structural studies using FT-IR and Raman spectroscopies. The obtained spectra were described, and appropriate band assignments were done. Based on the research conducted, the structural features of the phosphate network and their changes were determined. The results obtained showed that strontium in relatively low content up to 20 mol% acts as the glass network charge compensator and can stabilize the network. Above this threshold, SrO can be treated as a pure modifier, leading to gradual depolymerization. Thus, this point may be treated as the maximum waste loading for effective strontium immobilization.

5.
Sci Rep ; 14(1): 9758, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684820

RESUMO

Our investigation revealed that alterations in sulphur (S) pools are predominantly governed by soil organic carbon (SOC), soil nitrogen (N), microbial biomass, and soil enzyme activities in sandy clay loam (Vertic Ustropept) soil. We employed ten sets of nutrient management techniques, ranging from suboptimal (50% RDF) to super-optimal doses (150% RDF), including NPK + Zn, NP, N alone, S-free NPK fertilizers, NPK + FYM, and control treatments, to examine the interrelation of S with SOC characteristics. Fourier-transform infrared (FT-IR) spectroscopy was utilized to analyze the functional groups present in SOC characterization across four treatments: 100% NPK, 150% NPK, NPK + FYM, and absolute control plots. Principal component analysis (PCA) was then applied to assess 29 minimal datasets, aiming to pinpoint specific soil characteristics influencing S transformation. In an Inceptisol, the application of fertilizers (100% RDF) in conjunction with 10 t ha-1 of FYM resulted in an increase of S pools from the surface to the subsurface stratum (OS > HSS > SO42--S > WSS), along with an increase in soil N and SOC. FT-IR spectroscopy identified cellulose and thiocyanate functional groups in all four plots, with a pronounced presence of carbohydrate-protein polyphenol, sulfoxide (S=O), and nitrate groups specifically observed in the INM plot. The PCA findings indicated that the primary factors influencing soil quality and crop productivity (r2 of 0.69) are SOC, SMBC, SMBN, SMBS, and the enzyme activity of URE, DHA, and AS. According to the study, the combined application of fertilizer and FYM (10 t ha-1) together exert a positive impact on sulphur transformation, SOC accumulation, and maize yield in sandy clay loam soil.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Solo , Enxofre , Zea mays , Fertilizantes/análise , Enxofre/metabolismo , Enxofre/análise , Solo/química , Carbono/metabolismo , Carbono/análise , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nitrogênio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Milhetes/metabolismo , Biomassa , Agricultura/métodos , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
6.
Chemphyschem ; 25(11): e202300472, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38487944

RESUMO

Catalysts with V2O5, WO3 and V2O5-WO3 dispersed over TiO2 were synthesized using sol-gel technique and thoroughly characterized by various techniques. The catalysts were evaluated for degradation of ortho-dichloro benzene (o-DCB) in air/helium, a representative probe molecule for polychlorinated dibenzo-para-dioxin and polychlorinated dibenzofuran by employing in situ Fourier-transform infrared spectroscopy (FT-IR spectroscopy). Different intermediate species formed on the surface of the TiO2 supported catalysts through of interaction of sorbate molecules with the lattice and/or gaseous oxygen were investigated in detail. Analysis of vibrational bands, observed during sorption of o-DCB and o-DCB-air mixture as a function of temperature over these catalysts, delineated the role of surface intermediate species such as phenolate, enolates, maleates, carboxylates, carbonates in mineralization of o-DCB. Nature and stability of intermediate species, found to be different over these catalysts, were able to elucidate the catalytic activity trend.

7.
Arch Biochem Biophys ; 753: 109920, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307315

RESUMO

Revealing the potential of candidate drugs against different cancer types without disrupting normal cells depends on the drug mode of action. In the current study, the drug response of prostate cancer stem cells (PCSCs) to zoledronic acid (ZOL) grown in two-dimensional (2D) and three-dimensional (3D) culture systems was compared using Fourier transform-infrared (FT-IR) spectroscopy which is a vibrational spectroscopic technique, supporting by biochemical assays and imaging techniques. Based on our data, in 2D cell culture conditions, the ZOL treatment of PCSCs isolated according to both C133 and CD44 cell surface properties induced early/late apoptosis and suppressed migration ability. The CD133 gene expression and protein levels were altered, depending on culture systems. CD133 expression was significantly reduced in 2D cells upon ZOL treatment. FT-IR data revealed that the integrity, fluidity, and ordering/disordering states of the cell membrane and nucleic acid content were altered in both 2D and 3D cells after ZOL treatment. Regular protein structures decrease in 2D cells while glycogen and protein contents increase in 3D cells, indicating a more pronounced cytotoxic effect of ZOL for 2D cells. Untreated 3D PCSCs exhibited an even different spectral profile associated with IR signals of lipids, proteins, nucleic acids, and glycogen in comparison to untreated 2D cells. Our study revealed significant differences in the drug response and cellular constituents between 2D and 3D cells. Exploring molecular targets and/or drug-action mechanisms is significant in cancer treatment approaches; thus, FT-IR spectroscopy can be successfully applied as a novel drug-screening method in clinical research.


Assuntos
Neoplasias , Próstata , Masculino , Humanos , Ácido Zoledrônico/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas de Cultura de Células em Três Dimensões , Glicogênio , Células-Tronco Neoplásicas , Linhagem Celular Tumoral
8.
Chem Biol Drug Des ; 103(1): e14392, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37945521

RESUMO

The present study was carried out to determine the antitumor and antioxidant activities of the seaweed Durvillaea antarctica. Extraction and purification of polysaccharides from D. antarctica were performed. They were characterized by FT-IR and GC-MS, identifying isomers of arabinose, fucose, mannose, and galactose. The antioxidant capacity of polysaccharides was analyzed using the ABTS method (14.3 ± 0.5 µmol TE g-1 PS) and the DPPH method (21.82 ± 0.32 µmol TE g-1 PS). The antitumor capacity of polysaccharides was studied by MTT colorimetric assays in human leukemia, colon, breast, and lung cancer cell lines, obtaining the lowest IC50 in colon cancer (19.99 µg mL-1 ). In the line of healthy human gingival fibroblasts (HGF-1), an IC50 of 444.39 µg mL-1 was obtained. Flow cytometry in the HL60 cell line showed that polysaccharides at concentrations higher than IC50 inhibited cell proliferation, demonstrating a possible antitumor capacity in vitro. In the proteomic analysis with HGF-1, nine proteins involved in different biological processes were identified. In conclusion, polysaccharides from D. antarctica could be considered powerful nutraceuticals, mainly against colon cancer.


Assuntos
Neoplasias do Colo , Alga Marinha , Humanos , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Proteômica , Polissacarídeos/farmacologia , Neoplasias do Colo/tratamento farmacológico
9.
Biomedicines ; 11(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979691

RESUMO

Fibromyalgia syndrome (FM), one of the most common illnesses that cause chronic widespread pain, continues to present significant diagnostic challenges. The objective of this study was to develop a rapid vibrational biomarker-based method for diagnosing fibromyalgia syndrome and related rheumatologic disorders (systemic lupus erythematosus (SLE), osteoarthritis (OA) and rheumatoid arthritis (RA)) through portable FT-IR techniques. Bloodspot samples were collected from patients diagnosed with FM (n = 122) and related rheumatologic disorders (n = 70), including SLE (n = 17), RA (n = 43), and OA (n = 10), and stored in conventional protein saver bloodspot cards. The blood samples were prepared by four different methods (blood aliquots, protein-precipitated extraction, and non-washed and water-washed semi-permeable membrane filtration extractions), and spectral data were collected with a portable FT-IR spectrometer. Pattern recognition analysis, OPLS-DA, was able to identify the signature profile and classify the spectra into corresponding classes (Rcv > 0.93) with excellent sensitivity and specificity. Peptide backbones and aromatic amino acids were predominant for the differentiation and might serve as candidate biomarkers for syndromes such as FM. This research evaluated the feasibility of portable FT-IR combined with chemometrics as an accurate and high-throughput tool for distinct spectral signatures of biomarkers related to the human syndrome (FM), which could allow for real-time and in-clinic diagnostics of FM.

10.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364369

RESUMO

The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.


Assuntos
Amidas , Piridinas , Piridinas/química , Amidas/química , Betaína , Alquilação
11.
Cancer Diagn Progn ; 2(6): 750-757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340465

RESUMO

BACKGROUND/AIM: The early diagnosis of breast cancer plays an important role in reducing mortality and optimizing the prognosis of the disease. The existing visual and histopathological methods do not give any information at a molecular level. Fourier transform infrared spectroscopy does not require any preparation, such as fixation and histological stains. The collected infrared spectral "biomarker bands" give information at a molecular level and could be used for biomarker screening, in order to minimize the false-positive or false-negative results. MATERIALS AND METHODS: For this prospective study, nine biopsies of lobular carcinoma (7 in situ and 2 invasive) and the adjacent healthy region of the biopsies were used. Each infrared spectrum consisted of 120 scans/spectrum (120 co-added spectra) at a spectral resolution of 4 cm -1 . RESULTS: The infrared spectral analysis revealed three important "diagnostic spectral regions" between 3,300-2,850 cm -1 , 1,700-1,500 cm -1 , and 850-800 cm -1 , which are related to membrane, collagen, and DNA configuration damage, respectively. The shift of the absorption band at 1,161 cm -1 at higher wave numbers up to 1,172 cm -1 is assigned to vC-O-C bonds due to membrane, protein, and DNA glycosylation. CONCLUSION: The "biomarker bands" at 1,172 cm -1 can be used as "diagnostic marker bands" for cancer progression. The shift of the absorbance band at 825 cm -1 of the native configuration of B-DNA to lower wavenumbers at 810 cm -1 Z-DNA in grade III, suggests the irreversible stage of the disease. The detection and possibility to differentiate the DNA structures may allow detection of carcinogenesis at the early stage of the disease, and development of new anticancer therapies.

12.
MethodsX ; 9: 101847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160107

RESUMO

We have developed an infrared spectroscopic method for monitoring photochemical reactions in the gas phase. This method is based on the major components such as repetitive scan FT-IR spectrometer, multi-pass long-path gas cell, and Nd:YAG laser (ns). The FT-IR spectrometer was used as it is. The gas cell was further modified for the photolysis of the precursor. The vacuum line was designed and constructed solely in our laboratory. We make optical arrangements for both separation of fourth-harmonics (266 nm) from the fundamental (1064 nm) of Nd:YAG laser as well as to guide the UV light to the gas cell housed in the sample compartment of FT-IR. A special arrangement was done in order to get a multi-pass of UV light across the gas cell so that photolysis efficiency will increase significantly. We estimate the photolysis efficiency based on laser power, optical path-length of the laser light, vapor pressure of the precursor, and its absorption cross-section. Furthermore, we have done quantitative analysis for the precursor and photo-products using infrared absorbance and optical path length. This method is tested and validated by monitoring the photodegradation pathways of halobenzenes in the UV light.•Repetitive scan FT-IR spectrometer coupled with a multi-pass long-path gas cell and Nd:YAG laser.•Estimate photolysis efficiency of precursor and concentration of photoproducts.•Monitoring gaseous phase photochemical reactions up-to 100 of ms with spectral resolution 2 cm-1 is possible with this system.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121715, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985225

RESUMO

Early detection of breast cancer is of great value in improving the prognosis. The current detection methods of breast cancer have their own limitations. In this study, we investigated the feasibility of Fourier Transform Infrared (FT-IR) spectroscopy combined with different classification algorithms for the early detection of breast cancer in a large sample of 526 patients, including 308 invasive breast cancer, 101 ductal carcinoma in situ, and 117 healthy controls. The serum was measured with FT-IR spectroscopy. Kennard-Stone (KS) algorithm was used to divide the data into the training set and testing set. Support vector machine (SVM) model and back propagation neural network (BPNN) model were used to distinguish ductal carcinoma in situ, invasive breast cancer from healthy controls. The accuracies of the SVM model and BPNN model were 92.9% and 94.2%. To determine the effect of different material absorption bands on early detection, the band was divided into four parts including 900-1425 cm-1, 1475-1710 cm-1, 2800-3000 cm-1, and 3090-3700 cm-1, to be modeled and detected respectively. The final results showed that the ranges 900-1425 cm-1 and 1475-1710 cm-1 had superior classification accuracies. The region 900-1425 cm-1 corresponded to the lipids, proteins, sugar, and nucleic acids, and the region 1475-1710 cm-1 corresponded to the proteins. The biochemical substances in other bands also contributed some unique potential to the classification, so the classification accuracy was the best in the full band. The study indicates that serum FT-IR spectroscopy combined with SVM and BPNN models is an effective tool for the early detection of breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Algoritmos , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer , Feminino , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
14.
Food Chem ; 393: 133430, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696953

RESUMO

Flavonoids are secondary metabolites commonly found in plants. They are known for their antioxidant properties, are part of the defense mechanisms of plants and are responsible for the pigmentation of fruit and flowers petals. Consumption foods rich in flavonoids in the daily diet brings a number of pro-health benefits - for example blood pressure regulation, delaying the aging process or anti-cancer effect. These compounds in synthetic or natural form are also used in pharmacy. The profile of flavonoid compounds can be quickly, accurately and easy determine in the test sample by using the infrared and Raman spectroscopy. Those methods are successfully used in the food and pharmaceutical industries. Spectroscopy methods allow us to determine the chemical structure of these compounds. This review describes and compares differences between the spectroscopic spectra of individual compounds with the chemical structure for the flavonoids subgroups: flavones, isoflavones, flavanones, flavonols and anthocyanins.


Assuntos
Flavonoides , Análise Espectral Raman , Antocianinas , Antioxidantes/química , Flavonoides/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Photodiagnosis Photodyn Ther ; 38: 102785, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35231616

RESUMO

Fourier-transform infrared (FT-IR) and Raman spectroscopy are being widely applied as sensor-based techniques in oncology, particularly in the diagnosis of brain cancers and their subtypes. Overtime, these techniques have become more sensitive; and, accuracies of over 90% have been observed in several studies. This is indication of their potential for clinical implementation. Herein, we present a mini-review by revisiting some fundamentals of FT-IR and Raman spectroscopy along with their applications towards brain cancer detection in the literature.


Assuntos
Neoplasias Encefálicas , Fotoquimioterapia , Neoplasias Encefálicas/diagnóstico , Cabeça , Humanos , Fotoquimioterapia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
16.
Mar Pollut Bull ; 175: 113370, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35114548

RESUMO

Northern Dvina River is one of the largest rivers in the European Arctic flowing into the White Sea through the populated regions with developed industry. Floating plastics include microplastics (0.5-5 mm) and mesoplastics (5-25 mm) were observed on seasonal variations in the Northern Dvina River mouth. The samples were collected every month from September to November 2019 and from May to October 2020 with a Neuston net that was togged 3 nautical miles in the Korbel'nyy Branch of the River delta. Chemical composition of the plastic particles was determined using a Fourier transmission infrared spectrometer. The majority of the microplastics were identified as polyethylene 52.6%, followed by polypropylene 36.8%. After estimating the export fluxes of microplastics from the Northern Dvina River to the Arctic, there is no significant seasonal variation of the river export of microplastics. The microplastics export rate during the spring flood period in May turned out to be maximum, 58 items/s, while the minimum discharge was in September with a value of 9 items/s. The average weight concentration of microplastics was 18.5 µg/m3, which is higher than it was found in the Barents Sea - 12.5 µg/m3 and several times higher than in the Eurasian Arctic on average - 3.7 µg/m3. These results indicate that the Northern Dvina River is being one of the main sources of microplastic pollution of the White and the Barents Seas.


Assuntos
Microplásticos , Rios , Estações do Ano , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental/métodos , Microplásticos/análise , Oceanos e Mares , Rios/química , Poluentes Químicos da Água/análise
17.
Toxicon ; 207: 52-59, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999120

RESUMO

The crude venom of the Bothrops jararaca snake (Bj-CV) is a complex mixture of biologically active proteins that includes a variety of peptides in the low molecular weight fraction (Bj-PF). We investigated how an intramuscular injection of Bj-CV (1.2 mg kg-1) and Bj-PF (0.24 mg kg-1) influenced lung mechanics and lung and muscle inflammation in male Swiss mice 15 min, 1, 6, and 24 h after inoculation. Pressure dissipation against lung resistive components (ΔP1) rose significantly from 1 to 24 h after Bj-CV and 6-24 h after Bj-PF inoculation. Both Bj-CV and Bj-PF increased the total pressure variation of the lung (ΔPtot) 24 h after injection. Lung static elastance increased significantly after injection in all time periods investigated by Bj-CV and from 6 to 24 h by Bj-PF. Lung static elastance increased significantly after injection in all time periods investigated by Bj-CV and from 6 to 24 h by Bj-PF. Furthermore, intramuscular inoculation of Bj-CV and Bj-PF resulted in an increase in muscle and pulmonary inflammation, as evidenced by an increase in leukocyte influx when compared to the control group. Finally, both Bj-CV and Bj-PF cause acute lung injury, as shown by pulmonary inflammation and decreased lung mechanics. Furthermore, the fact that Bj-PF produces mechanical alterations in the lungs and muscular inflammation implies that non-enzymatic compounds can cause inflammation.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Venenos de Crotalídeos/toxicidade , Leucócitos , Pulmão , Masculino , Camundongos , Peptídeos
18.
Macromol Rapid Commun ; 43(6): e2100764, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086162

RESUMO

Dye-sensitized solar cell (DSSC) is a promising alternative to the commercially available amorphous silicon-based solar cell because of several advantageous properties. A DSSC with a fast ion conducting solid polymer electrolyte is required for the arid atmosphere of Gulf countries. In this work, a new matrix, poly(ethylene oxide)-tetramethyl succinonitrile blend to synthesize a blend-LiI-I2 solid polymer electrolyte for the DSSC application has been proposed. The tetramethyl succinonitrile is a member of plastic crystal with a solid-solid phase transition temperature (Tpc ) of ≈71 °C and melting temperature (Tm ) of ≈170.5 °C. Its molar fraction, 0.1-0.15 is sufficient enough for synthesizing a polymer electrolyte with electrical conductivity of >10-4 S cm-1 at room temperature. This electrolyte shows Vogel-Tamman-Fulcher type behavior with a low value (≈0.083 eV) of pseudo-activation energy for easy ion transport. The results of Fourier-transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies reveal the plasticizing effect of tetramethyl succinonitrile to form an amorphous phase. This electrolyte results in a ≈661% gain in short-circuit current density and thereby a ≈552% gain in the cell efficiency (≈3.5%) with respect to the DSSC prepared with the tetramethyl succinonitrile-free electrolyte.


Assuntos
Polietilenoglicóis , Polímeros , Eletrólitos/química , Óxido de Etileno , Nitrilas , Plastificantes , Polietilenoglicóis/química , Polímeros/química
19.
Cells ; 10(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924045

RESUMO

Fourier transform infrared spectroscopy (FT-IR) is widely used in the analysis of the chemical composition of biological materials and has the potential to reveal new aspects of the molecular basis of diseases, including different types of cancer. The potential of FT-IR in cancer research lies in its capability of monitoring the biochemical status of cells, which undergo malignant transformation and further examination of spectral features that differentiate normal and cancerous ones using proper mathematical approaches. Such examination can be performed with the use of chemometric tools, such as partial least squares discriminant analysis (PLS-DA) classification and partial least squares regression (PLSR), and proper application of preprocessing methods and their correct sequence is crucial for success. Here, we performed a comparison of several state-of-the-art methods commonly used in infrared biospectroscopy (denoising, baseline correction, and normalization) with the addition of methods not previously used in infrared biospectroscopy classification problems: Mie extinction extended multiplicative signal correction, Eiler's smoothing, and probabilistic quotient normalization. We compared all of these approaches and their effect on the data structure, classification, and regression capability on experimental FT-IR spectra collected from five different prostate normal and cancerous cell lines. Additionally, we tested the influence of added spectral noise. Overall, we concluded that in the case of the data analyzed here, the biggest impact on data structure and performance of PLS-DA and PLSR was caused by the baseline correction; therefore, much attention should be given, especially to this step of data preprocessing.


Assuntos
Processamento de Imagem Assistida por Computador , Próstata/citologia , Próstata/diagnóstico por imagem , Linhagem Celular , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Masculino , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Materials (Basel) ; 14(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916333

RESUMO

The interaction between tissues and biomaterials (BM) has the purpose of improving and replacing anatomical parts of the human body, avoiding the occurrence of adverse reactions in the host organism. Unfortunately, the early failure of implants cannot be currently avoided, since neither a good mixture of mechanical and chemical characteristics of materials nor their biocompatibility has been yet achieved. Bioactive glasses are recognized to be a fine class of bioactive substances for good repair and replacement. BM interact with living bones through the formation of a hydroxyapatite surface layer that is analogous to bones. Bioglasses' composition noticeably affects their biological properties, as does the synthesis method, with the best one being the versatile sol-gel technique, which includes the change of scheme from a 'sol' fluid into a 'gel'. This process is widely used to prepare many materials for biomedical implants (e.g., hip and knee prostheses, heart valves, and ceramic, glassy and hybrid materials to serve as carriers for drug release). Nanoparticles prepared by the sol-gel method are interesting systems for biomedical implementations, and particularly useful for cancer therapy. This review provides many examples concerning the synthesis and characterization of the above-mentioned materials either taken from literature and from recently prepared zirconia/polyethylene glycol (PEG) hybrids, and the corresponding results are extensively discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA