Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168719, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040374

RESUMO

Most microaerophilic Fe(II)-oxidizing bacteria (mFeOB) belonging to the family Gallionellaceae are autotrophic microorganisms that can use inorganic carbon to drive carbon sequestration in wetlands. However, the relationship between microorganisms involved in Fe and C cycling is not well understood. Here, soil samples were collected from different wetlands to explore the distribution and correlation of Gallionella-related mFeOB and carbon-fixing microorganisms containing cbbL and cbbM genes. A significant positive correlation was found between the abundances of mFeOB and the cbbL gene, as well as a highly significant positive correlation between the abundances of mFeOB and the cbbM gene, indicating the distribution of mFeOB in co-occurrence with carbon-fixing microorganisms in wetlands. The mFeOB were mainly dominated by Sideroxydans lithotrophicus ES-1 and Gallionella capsiferriformans ES-2 in all wetland soils. The structures of the carbon-fixing microbial communities were similar in these wetlands, mainly consisting of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The extractable Fe(II) concentrations affected the community composition of mFeOB, resulting in a significant difference in the relative abundances of the dominant FeOB. The main factors affecting cbbL-related microbial communities were dissolved inorganic carbon and oxygen, soil redox potential, and sodium acetate-extracted Fe(II). The composition of cbbM-related microbial communities was mainly affected by acetate-extracted Fe(II) and soil redox potential. In addition, the positive correlation between these functional microorganisms suggests that they play a synergistic role in Fe(II) oxidation and carbon fixation in wetland soil ecosystems. Our results suggest a cryptic relationship between mFeOB and carbon-fixing microorganisms in wetlands and that the microbial community structure can be effectively altered by regulating their physicochemical properties, thus affecting the capacity of carbon sequestration.


Assuntos
Ferro , Microbiota , Ferro/química , Carbono , Áreas Alagadas , Solo/química , Compostos Ferrosos , Oxirredução
2.
Microorganisms ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38138004

RESUMO

Arsenic (As) is a highly toxic metalloid, and its widespread contamination of water is a serious threat to human health. This study explored As removal using Fe(II)-oxidizing bacteria. The strain Fe7 isolated from iron mine soil was classified as the genus Pseudarthrobacter based on 16S rRNA gene sequence similarities and phylogenetic analyses. The strain Fe7 was identified as a strain of Gram-positive, rod-shaped, aerobic bacteria that can oxidize Fe(II) and produce iron mineral precipitates. X-ray diffraction, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy patterns showed that the iron mineral precipitates with poor crystallinity consisted of Fe(III) and numerous biological impurities. In the co-cultivation of the strain Fe7 with arsenite (As(III)), 100% of the total Fe and 99.9% of the total As were removed after 72 h. During the co-cultivation of the strain Fe7 with arsenate (As(V)), 98.4% of the total Fe and 96.9% of the total As were removed after 72 h. Additionally, the iron precipitates produced by the strain Fe7 removed 100% of the total As after 3 h in both the As(III) and As(V) pollution systems. Furthermore, enzyme activity experiments revealed that the strain Fe7 oxidized Fe(II) by producing extracellular enzymes. When 2% (v/v) extracellular enzyme liquid of the strain Fe7 was added to the As(III) or As(V) pollution system, the total As removal rates were 98.6% and 99.4%, respectively, after 2 h, which increased to 100% when 5% (v/v) and 10% (v/v) extracellular enzyme liquid of the strain Fe7 were, respectively, added to the As(III) and As(V) pollution systems. Therefore, iron biomineralized using a co-culture of the strain Fe7 and As, iron precipitates produced by the strain Fe7, and the extracellular enzymes of the strain Fe7 could remove As(III) and As(V) efficiently. This study provides new insights and strategies for the efficient remediation of arsenic pollution in aquatic environments.

3.
Environ Sci Technol ; 56(23): 17443-17453, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36417801

RESUMO

Fe(II) clays are common across many environments, making them a potentially significant microbial substrate, yet clays are not well established as an electron donor. Therefore, we explored whether Fe(II)-smectite supports the growth of Sideroxydans lithotrophicus ES-1, a microaerophilic Fe(II)-oxidizing bacterium (FeOB), using synthesized trioctahedral Fe(II)-smectite and 2% oxygen. S. lithotrophicus grew substantially and can oxidize Fe(II)-smectite to a higher extent than abiotic oxidation, based on X-ray near-edge spectroscopy (XANES). Sequential extraction showed that edge-Fe(II) is oxidized before interior-Fe(II) in both biotic and abiotic experiments. The resulting Fe(III) remains in smectite, as secondary minerals were not detected in biotic and abiotic oxidation products by XANES and Mössbauer spectroscopy. To determine the genes involved, we compared S. lithotrophicus grown on smectite versus Fe(II)-citrate using reverse-transcription quantitative PCR and found that cyc2 genes were highly expressed on both substrates, while mtoA was upregulated on smectite. Proteomics confirmed that Mto proteins were only expressed on smectite, indicating that ES-1 uses the Mto pathway to access solid Fe(II). We integrate our results into a biochemical and mineralogical model of microbial smectite oxidation. This work increases the known substrates for FeOB growth and expands the mechanisms of Fe(II)-smectite alteration in the environment.


Assuntos
Compostos Ferrosos , Ferro , Ferro/química , Argila , Oxirredução , Compostos Ferrosos/metabolismo
4.
J Microbiol ; 58(5): 350-356, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32342339

RESUMO

A nitrate-reducing Fe(II)-oxidizing bacterial strain, F8825T, was isolated from the Fe(II)-rich sediment of an urban creek in Pearl River Delta, China. The strain was Gram-negative, facultative chemolithotrophic, facultative anaerobic, non-spore-forming, and rod-shaped with a single flagellum. Phy-logenetic analysis based on 16S rRNA gene sequencing indicated that it belongs to the genus Ciceribacter and is most closely related to C. lividus MSSRFBL1T (99.4%), followed by C. thiooxidans F43bT (98.8%) and C. azotifigens A.slu09T (98.0%). Fatty acid, polar lipid, respiratory quinone, and DNA G + C content analyses supported its classification in the genus Ciceribacter. Multilocus sequence analysis of concatenated 16S rRNA, atpD, glnII, gyrB, recA, and thrC suggested that the isolate was a novel species. DNA-DNA hybridization and genome sequence comparisons (90.88 and 89.86%, for values of ANIm and ANIb between strains F8825T with MSSRFBL1T, respectively) confirmed that strain F8825T was a novel species, different from C. lividus MSSRFBL1T, C. thiooxidans F43bT, and C. azotifigens A.slu09T. The physiological and biochemical properties of the strain, such as carbon source utilization, nitrate reduction, and ferrous ion oxidation, further supported that this is a novel species. Based on the polyphasic taxonomic results, strain F8825T was identified as a novel species in the genus Ciceribacter, for which the name Ciceribacter ferrooxidans sp. nov. is proposed. The type strain is F8825T (= CCTCC AB 2018196T = KCTC 62948T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Rhizobiaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Compostos Ferrosos/metabolismo , Genes Bacterianos , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Oxirredução , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Rios/microbiologia , Análise de Sequência de DNA
5.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504446

RESUMO

Waters draining from flooded and abandoned coal mines in the South Wales Coalfield (SWC) are substantial sources of pollution to the environment characterized by circumneutral pH and elevated dissolved iron concentrations (>1 mg L-1). The discharged Fe precipitates to form Fe(III) (oxyhydr)oxides which sustain microbial communities. However, while several studies have investigated the geochemistry of mine drainage in the SWC, less is known about the microbial ecology of the sites presenting a gap in our understanding of biogeochemical cycling and pollutant turnover. This study investigated the biogeochemistry of the Ynysarwed mine adit in the SWC. Samples were collected from nine locations within sediment at the mine entrance from the upper and lower layers three times over one year for geochemical and bacterial 16S rRNA gene sequence analysis. During winter, members of the Betaproteobacteria bloomed in relative abundance (>40%) including the microaerophilic Fe(II)-oxidizing genus Gallionella. A concomitant decrease in Chlorobi-associated bacteria occurred, although by summer the community composition resembled that observed in the previous autumn. Here, we provide the first insights into the microbial ecology and seasonal dynamics of bacterial communities of Fe(III)-rich deposits in the SWC and demonstrate that neutrophilic Fe(II)-oxidizing bacteria are important and dynamic members of these communities.


Assuntos
Betaproteobacteria/metabolismo , Chlorobi/metabolismo , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Chlorobi/genética , Chlorobi/isolamento & purificação , Carvão Mineral/análise , Minas de Carvão , Poluição Ambiental , Oxirredução , RNA Ribossômico 16S/genética , Estações do Ano
6.
Front Microbiol ; 6: 719, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236300

RESUMO

We report the isolation, characterization, and development of a robust genetic system for a halophilic, Fe(II)-oxidizing bacterium isolated from a vertical borehole originating 714 m below the surface located in the Soudan Iron Mine in northern Minnesota, USA. Sequence analysis of the 16S rRNA gene places the isolate in the genus Marinobacter of the Gammaproteobacteria. The genome of the isolate was sequenced using a combination of short- and long-read technologies resulting in two contigs representing a 4.4 Mbp genome. Using genomic information, we used a suicide vector for targeted deletion of specific flagellin genes, resulting in a motility-deficient mutant. The motility mutant was successfully complemented by expression of the deleted genes in trans. Random mutagenesis using a transposon was also achieved. Capable of heterotrophic growth, this isolate represents a microaerophilic Fe(II)-oxidizing species for which a system for both directed and random mutagenesis has been established. Analysis of 16S rDNA suggests Marinobacter represents a major taxon in the mine, and genetic interrogation of this genus may offer insight into the structure of deep subsurface communities as well as an additional tool for analyzing nutrient and element cycling in the subsurface ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA