RESUMO
Iron (Fe) oxide nanoparticles (NPs) improve crop growth. However, the comparative effect of root and foliar-applied different sources of Fe oxide NPs on plant performance at morphological and physiological levels still needs to be discovered. In this study, we characterized the growth and physiological responses of hydroponic-cultured maize seedlings to four sources of Fe (i.e., α-Fe2O3, γ-Fe2O3, Fe3O4 NPs, and bulk Fe3O4) and two application methods (root vs. foliar). Results showed that Fe concentration in root and shoot increased by elevating the level of NPs from 100 mg L-1 to 500 mg L-1. Overall, the responses of maize seedlings to different sources of Fe oxide NPs were as follows: Fe3O4 > γ-Fe2O3 > α-Fe2O3 > bulk Fe3O4. The application of Fe at concentrations ranging from 100 mg L-1 to 500 mg L-1 had no significant effects on various growth parameters of maize, including biomass, chlorophyll content, and root length. Iron oxide NPs increased the plant biomass by 23-37% by root application, whereas it was 5-9% by foliar application. Chlorophyll contents were increased by 29-34% and 18-22% by foliar and root applications, respectively. The non-significant response of reactive oxygen species (i.e., superoxide dismutase, catalase, and peroxidase) suggested optimum maize performance for supplementing Fe oxide NPs. A confocal laser scanning microscope suggested that Fe oxide NPs entered through the epidermis and from the cortex to the endodermis. Our results provide a scientific basis that the root application of Fe3O4 at the rate of 100 mg L-1 is a promising approach to obtain higher maize performance and reduce the quantity of fertilizer used in agriculture to minimize environmental effects while improving crop productivity and quality. These findings demonstrated the tremendous potential of Fe NPs as an environmentally friendly and sustainable crop approach.
RESUMO
Despite arsenic (As) bioavailability being highly correlated with water status and the presence of iron (Fe) minerals, limited information is currently available on how externally applied Fe nanomaterials in soil-rice systems affect As oxidation and stabilization during flooding and draining events. Herein, the stabilization of As in a paddy soil by a phytosynthesized iron oxide nanomaterials (PION) and the related mechanism was investigated using a combination of chemical extraction and functional microbe analysis in soil at both flooding (60 d) and draining (120 d) stages. The application of PION decreased both specifically bound and non-specifically bound As. The As content in rice root, stem, husk and grain was reduced by 78.5, 17.3, 8.4 and 34.4%, respectively, whereas As(III) and As(V) in root declined by 96.9 and 33.3% for the 1% PION treatment after 120 d. Furthermore, the 1% PION treatment decreased the ratio of As(III)/As(V) in the rhizosphere soil, root and stem. Although PION had no significant effect on the overall Shannon index, the distribution of some specific functional microbes changed dramatically. While no As(III) oxidation bacteria were found at 60 d in any treatments, PION treatment increased As(III) oxidation bacteria by 3-9 fold after 120 d cultivation. Structural equation model analysis revealed that the ratio of Fe(III)/Fe(II) affected As stabilization directly at the flooding stage, whereas nitrate reduction and As(III) oxidation microbial groups played a significant role in the stabilization of As at the draining stage. These results highlight that PION exhibits a robust ability to reduce As availability to rice, with chemical oxidation, reduction inhibition and adsorption dominating at the flooding stage, while microbial oxidation, adsorption and coprecipitation dominant during draining.
Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Compostos Férricos/química , Compostos Ferrosos , Ferro/química , Minerais/metabolismo , Nitratos/análise , Oryza/metabolismo , Solo/química , Poluentes do Solo/análise , Água/análiseRESUMO
The present study introduces the process performances of nitrophenols pertraction using new liquid supported membranes under the action of a magnetic field. The membrane system is based on the dispersion of silver-iron oxide nanoparticles in n-alcohols supported on hollow microporous polypropylene fibers. The iron oxide-silver nanoparticles are obtained directly through cyclic voltammetry electrolysis run in the presence of soluble silver complexes ([AgCl2]-; [Ag(S2O3)2]3-; [Ag(NH3)2]+) and using pure iron electrodes. The nanostructured particles are characterized morphologically and structurally by scanning electron microscopy (SEM and HFSEM), EDAX, XRD, and thermal analysis (TG, DSC). The performances of the nitrophenols permeation process are investigated in a variable magnetic field. These studies show that the flux and extraction efficiency have the highest values for the membrane system embedding iron oxide-silver nanoparticles obtained electrochemically in the presence of [Ag(NH3)2]+ electrolyte. It is demonstrated that the total flow of nitrophenols through the new membrane system depends on diffusion, convection, and silver-assisted transport.
RESUMO
The environmental mobility of antimony (Sb) is controlled by interactions with iron (Fe) oxides, such as ferrihydrite. Under near-neutral pH conditions, Fe(II) catalyzes the transformation of ferrihydrite to more stable phases, thereby potentially altering the partitioning and speciation of associated Sb. Although largely unexplored, Sb itself may also influence ferrihydrite transformation pathways. Here, we investigated the impact of Sb on the Fe(II)-induced transformation of ferrihydrite at pH 7 across a range of Sb(V) loadings (Sb:Fe(III) molar ratios of 0, 0.003, 0.016, and 0.08). At low and medium Sb loadings, Fe(II) induced rapid transformation of ferrihydrite to goethite, with some lepidocrocite forming as an intermediate phase. In contrast, the highest Sb:Fe(III) ratio inhibited lepidocrocite formation, decreased the extent of goethite formation, and instead resulted in substantial formation of feroxyhyte, a rarely reported FeOOH polymorph. At all Sb loadings, the transformation of ferrihydrite was paralleled by a decrease in aqueous and phosphate-extractable Sb concentrations. Extended X-ray absorption fine structure spectroscopy showed that this Sb immobilization was attributable to incorporation of Sb into Fe(III) octahedral sites of the neo-formed minerals. Our results suggest that Fe oxide transformation pathways in Sb-contaminated systems may strongly differ from the well-known pathways under Sb-free conditions.
Assuntos
Compostos Férricos , Ferro , Antimônio , Catálise , Compostos Ferrosos , Minerais , OxirreduçãoRESUMO
The bioavailability and potential uptake of heavy metals by crops is fundamentally influenced by the forms of metals in soils. Organic matter plays an important role in controlling the transformation of heavy metal fractionations in soils. However, long-term effects of organic matter on heavy metal speciation remains highly uncertain. In this study, rice straw was introduced to a subtropical Pb-contaminated soil for 2-year period so as to clarify the redistribution of Pb fractions and their correlations with soil properties. By combining sequential extraction and X-ray absorption fine structure spectroscopy, we find that lead is predominantly presented in Fe oxide-bound, surface adsorbed, and residual fractions in the soil. The incorporation of rice straw can effectively reduce the labile species of Pb by promoting the binding of Pb to iron oxides. Furthermore, aging leads to the transfer of considerable amounts of Pb to the association with Fe oxides and this transformation is enhanced by the presence of organic matter. Organic matter input and soil aging tend to shift Pb to amorphous Fe oxides than crystalline Fe oxides. The correlation analysis shows that Fe oxide fractions play vital roles in controlling the forms of Pb in soil. This study presents the first result regarding the long-term effect of organic matter on the redistribution of Pb in naturally polluted soil, which is useful for understanding the fate of Pb and developing remediation strategies for Pb-polluted soils.
Assuntos
Compostos Férricos/química , Chumbo/química , Modelos Químicos , Poluentes do Solo/química , Adsorção , Disponibilidade Biológica , Fracionamento Químico , Poluição Ambiental/análise , Chumbo/análise , Metais Pesados/análise , Oryza/química , Solo/química , Poluentes do Solo/análiseRESUMO
Highly efficient, robust, and cheap water oxidation electrodes are of great significance for large-scale production of hydrogen by electrolysis of water. Here, a self-supported stainless steel (SS) nanocone array coated with a layer of nanoparticulate Ni-Fe oxides/(oxy)hydroxides was fabricated by a facile, low-cost, and easily scalable two-step process. The construction of a nanocone array on the surface of an AISI 304 SS plate by acid corrosion greatly enlarged the specific surface area of the substrate, and the subsequent formation of a layer of Ni-Fe oxides/(oxy)hydroxides featuring the NiFe2O4 spinel phase on the nanocone surface by electrodeposition of [Ni(bpy)3]2+ significantly enhanced the intrinsic activity and the stability of the SS-based electrode. The as-prepared electrode demonstrated superior activity for the oxygen evolution reaction (OER) in 1 M KOH, with 232 and 280 mV overpotentials to achieve 10 and 100 mA cmgeo-2 current densities, respectively. The high activity of the electrode was maintained over 340 h of chronopotentiometric test at 20 mA cmgeo-2, and the electrode also showed good stability over 100 h of electrolysis at high current density (200 mA cm-2). More important for practical application, the used SS-based electrode can be easily regenerated with the original OER activity. The superior activity of this SS-based electrode stems from synergistic combination of high conductivity of the SS substrate, a large electrochemically active surface area of the nanocone array, and a uniformly coated nanoparticulate Ni-Fe oxide/(oxy)hydroxide layer with an optimal Ni/Fe ratio.
RESUMO
This paper discusses Cd(II) and Pb(II) sorption efficiency of biochars modified by impregnation with magnetic particles. All selected biochar characteristics were significantly affected after the modification. More specifically, the cation exchange capacity increased after the modification, except for grape stalk biochar. However, the changes in the pH value, PZC, and BET surface after modification process were less pronounced. The metal loading rate was also significantly improved, especially for Cd(II) sorption on/in nut shield and plum stone biochars (10- and 16-times increase, respectively). The results indicated that cation exchange (as a metal sorption mechanism) was strengthened after Fe oxide impregnation, which limited the desorbed amount of tested metals. In contrast, the magnetization of grape stalk biochar reduced Pb(II) sorption in comparison with that of pristine biochar. Magnetic modification is, therefore, more efficient for biochars with well-developed structure and for more mobile metals, such as Cd(II).
Assuntos
Cádmio/química , Carvão Vegetal/química , Chumbo/química , Purificação da Água/métodos , Adsorção , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Magnetismo , Águas Residuárias/químicaRESUMO
Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising.
Assuntos
Cádmio/análise , Ferro/análise , Oryza/química , Solo/química , Ácidos/análise , Disponibilidade Biológica , China , Concentração de Íons de Hidrogênio , Mineração , Oryza/crescimento & desenvolvimento , Óxidos/análiseRESUMO
The effect of iron (Fe) redox cycling on the mobility and bioavailability of arsenic (As) in paddy soils has attracted increasing concerns, especially in Asia, where the paddy soil is characteristic of Fe with high abundance and activity. However, whether amorphous Fe oxide-bound As acts as a source or a sink of As in natural field conditions needs to be clarified further. In this study, 73 pairs of soil and rice were collected from paddy fields contaminated by As-containing acid mining drainage. The most significant correlations between the iron fractions and As fractions suggest that Fe redox cycling can directly affect As fractionation in soils, which can then indirectly affect As bioavailability. Significantly negative correlations between amorphous Fe oxide-bound As in soil and As in rice grain were found, indicating that amorphous Fe oxide-bound As acts a sink of As.
Assuntos
Arsênio/análise , Mineração , Oryza/química , Poluentes do Solo/análise , Arsênio/química , Arsênio/metabolismo , Ásia , Monitoramento Ambiental , Compostos Férricos/química , Oryza/metabolismo , Solo/química , Poluentes do Solo/química , Poluentes do Solo/metabolismoRESUMO
Iron magnetic nanoparticles were synthesized under an inert atmosphere via the reaction between FeCl3 and NaBH4 in droplets of water in a microemulsion consisting of octane with cetyl trimethylammonium bromide and butanol as surfactants. A thin Fe3O4 layer was produced on the iron nanoparticles using slow, controlled oxidation at room temperature. A silica shell was deposited on the Fe3O4 using 3-aminopropyltrimethoxysilane following the method of Zhang et al. [Mater. Sci. Eng. C 30 (2010) 92-97]. The structure and chemistry of the resulting nanoparticles were studied using variety of methods and their magnetic properties were determined. The diameter of the iron core was typically 8-16 nm, while the thickness of the Fe3O4 shell was 2-3 nm. The presence of the silica layer was confirmed using Fourier transform infra-red spectroscopy and the number of NH2-groups on each nanoparticle was determined based on colorimetric tests using ortho-phthalaldehyde.