Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159253

RESUMO

In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Cryptococcus neoformans/enzimologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Proteases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Cryptococcus neoformans/genética , Corantes Fluorescentes/química , Furina/genética , Furina/metabolismo , Humanos , Pandemias , Peptídeos/química , Peptídeos/metabolismo , Proteólise , SARS-CoV-2/fisiologia
2.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807426

RESUMO

The chemical modification of amino acids plays an important role in the modulation of proteins or peptides and has useful applications in the activation and stabilization of enzymes, chemical biology, shotgun proteomics, and the production of peptide-based drugs. Although chemoselective modification of amino acids such as lysine and arginine via the insertion of respective chemical moieties as citraconic anhydride and phenyl glyoxal is important for achieving desired application objectives and has been extensively reported, the extent and chemoselectivity of the chemical modification of specific amino acids using specific chemical agents (blocking or modifying agents) has yet to be sufficiently clarified owing to a lack of suitable assay methodologies. In this study, we examined the utility of a fluorogenic assay method, based on a fluorogenic tripeptide substrate (FP-AA1-AA2-AA3) and the proteolytic enzyme trypsin, in determinations of the extent and chemoselectivity of the chemical modification of lysine or arginine. As substrates, we used two fluorogenic tripeptide probes, MeRho-Lys-Gly-Leu(Ac) (lysine-specific substrate) and MeRho-Arg-Gly-Leu(Ac) (arginine-specific substrate), which were designed, synthesized, and evaluated for chemoselective modification of specific amino acids (lysine and arginine) using the fluorogenic assay. The results are summarized in terms of half-maximal inhibitory concentrations (IC50) for the extent of modification and ratios of IC50 values (IC50arginine/IC50lysine and IC50lysine/IC50arginine) as a measure of the chemoselectivity of chemical modification for amino acids lysine and arginine. This novel fluorogenic assay was found to be rapid, precise, and reproducible for determinations of the extent and chemoselectivity of chemical modification.


Assuntos
Arginina/química , Lisina/química , Peptídeo Hidrolases/química , Peptídeos/química , Tripsina/química , Fluorescência , Cinética , Proteólise
3.
Mikrochim Acta ; 188(4): 137, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33763734

RESUMO

The novel corona (SARS-CoV-2) virus causes a global pandemic, which motivates researchers to develop reliable and effective methods for screening and detection of SARS-CoV-2. Though there are several methods available for the diagnosis of SARS-CoV-2 such as RT-PCR and ELSIA, nevertheless, these methods are time-consuming and may not apply at the point of care. In this study, we have developed a specific, sensitive, quantitative and fast detection method for SARS-CoV-2 by fluorescence resonance energy transfer (FRET) assay. The total extracellular protease proteolytic activity from the virus has been used as the biomarker. The specific peptide sequences from the library of 115 dipeptides were identified via changes in the fluorescence signal. The fluorogenic dipeptide substrates have the fluorophore and a quencher at the N- and the C- terminals, respectively. When the protease hydrolyzes the peptide bond between the two specific amino acids, it leads to a significant increase in the fluorescence signals. The specific fluorogenic peptide (H-d) produces a high fluorescence signal. A calibration plot was obtained from the changes in the fluorescence intensity against the different concentrations of the viral protease. The lowest limit of detection of this method was 9.7 ± 3 pfu/mL. The cross-reactivity of the SARS-CoV-2-specific peptide was tested against the MERS-CoV which does not affect the fluorescence signal. A significant change in the fluorescence signal with patient samples indicates that this FRET-based assay might be applied for the diagnosis of SARS-CoV-2 patients. Graphical abstract.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteases 3C de Coronavírus/metabolismo , Corantes Fluorescentes/metabolismo , Peptídeos/metabolismo , SARS-CoV-2 , Proteínas Virais/metabolismo , Animais , Bioensaio , COVID-19/microbiologia , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Humanos , Biblioteca de Peptídeos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero , Ensaio de Placa Viral
4.
J Cancer ; 9(14): 2559-2570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026855

RESUMO

Background: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Methods: Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts. Results: NSCLC cell lines and patient tumors and exosomes consistently showed significant increases of ADAM10sa relative to their normal, inflammatory and/or benign-tumor controls. Additionally, stage IA-IIB NSCLC primary tumors of patients who died of the disease exhibited greater increases of ADAM10sa than those of patients who survived 5 years following diagnosis and surgery. In contrast, NSCLC cell lines and patient tumors and exosomes did not display increases of ADAM17sa. Conclusions: This study is the first to investigate enzyme-specific proteolytic activities as potential cancer biomarkers. It provides a proof-of-concept that ADAM10sa could be a biomarker for NSCLC early detection and outcome prediction. To ascertain that ADAM10sa is a useful cancer biomarker, further robust clinical validation studies are needed.

5.
J Cancer ; 8(19): 3916-3932, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187866

RESUMO

Increases in expression of ADAM10 and ADAM17 genes and proteins have been evaluated, but not validated as cancer biomarkers. Specific enzyme activities better reflect enzyme cellular functions, and might be better biomarkers than enzyme genes or proteins. However, no high throughput assay is available to test this possibility. Recent studies have developed the high throughput real-time proteolytic activity matrix analysis (PrAMA) that integrates the enzymatic processing of multiple enzyme substrates with mathematical-modeling computation. The original PrAMA measures with significant accuracy the activities of individual metalloproteinases expressed on live cells. To make the biomarker assay usable in clinical practice, we modified PrAMA by testing enzymatic activities in cell and tissue lysates supplemented with broad-spectrum non-MP enzyme inhibitors, and by maximizing the assay specificity using systematic mathematical-modeling analyses. The modified PrAMA accurately measured the absence and decreases of ADAM10 sheddase activity (ADAM10sa) and ADAM17sa in ADAM10-/- and ADAM17-/- mouse embryonic fibroblasts (MEFs), and ADAM10- and ADAM17-siRNA transfected human cancer cells, respectively. It also measured the restoration and inhibition of ADAM10sa in ADAM10-cDNA-transfected ADAM10-/- MEFs and GI254023X-treated human cancer cell and tissue lysates, respectively. Additionally, the modified PrAMA simultaneously quantified with significant accuracy ADAM10sa and ADAM17sa in multiple human tumor specimens, and showed the essential characteristics of a robust high throughput multiplex assay that could be broadly used in biomarker studies. Selectively measuring specific enzyme activities, this new clinically applicable assay is potentially superior to the standard protein- and gene-expression assays that do not distinguish active and inactive enzyme forms.

6.
Bioorg Med Chem ; 23(13): 3237-47, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25979376

RESUMO

An efficient assay for monitoring the activity of the key autophagy-initiating enzyme ATG4B based on a small peptide substrate has been developed. A number of putative small fluorogenic peptide substrates were prepared and evaluated and optimized compounds showed reasonable rates of cleavage but required high enzyme concentrations which limited their value. A modified peptide substrate incorporating a less sterically demanding self-immolative element was designed and synthesized and was shown to have enhanced properties useful for evaluating inhibitors of ATG4B. Substrate cleavage was readily monitored and was linear for up to 4h but enzyme concentrations of about ten-fold higher were required compared to assays using protein substrate LC3 or analogs thereof (such as FRET-LC3). Several known inhibitors of ATG4B were evaluated using the small peptide substrate and gave IC50 values 3-7 fold higher than previously obtained values using the FRET-LC3 substrate.


Assuntos
Bioensaio , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Corantes Fluorescentes/síntese química , Peptídeos/síntese química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Autofagia , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Proteínas Associadas aos Microtúbulos/química , Dados de Sequência Molecular , Peptídeos/química , Proteólise , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA