Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413000, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268751

RESUMO

G-quadruplex (G4) DNA structures are increasingly acknowledged as promising targets in cancer research, and the development of G4-specific stabilizing compounds may lay a fundamental foundation in precision medicine for cancer treatment. Here, we propose a light-responsive G4-binder for precise modulation of drug activation, providing dynamic and spatiotemporal control over G4-associated biological processes contributing to cancer cell death. We developed a specialized fluorinated azobenzene (AB) switch equipped with a quinoline unit and a positively charged carboxamide side chain, Q-Azo4F-C, designed for targeted binding to G4 structures within cells. Biophysical studies, combined with molecular dynamics simulations, provide insights into the unique coordination modes of the photoswitchable ligand in its trans and cis configurations when interacting with G4s. The observed variations in complexation processes between the two isomeric states in different cancer cell lines manifest in more than 25-fold reversible cytotoxic activity. Immunostaining conducted with the structure-specific G4 antibody (BG4), establishes a direct correlation between cytotoxicity and the varying extent of G4 induction regulated by the two isoforms. Finally, we demonstrate the photo-driven reversible regulation of G4 structures in lung cancer cells by Q-Azo4F-C. Our findings highlight the potential of light-responsive G4-binders in advancing precision cancer therapy through dynamic control of G4-mediated pathways.

2.
Int J Biol Macromol ; 277(Pt 3): 134126, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097044

RESUMO

DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).


Assuntos
Quadruplex G , Porfirinas , Telômero , Quadruplex G/efeitos dos fármacos , Porfirinas/química , Porfirinas/farmacologia , Humanos , Telômero/química , Linhagem Celular Tumoral , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Simulação de Dinâmica Molecular , Ligantes , Oncogenes
3.
Protein Sci ; 33(9): e5093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180489

RESUMO

RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.


Assuntos
DNA Helicases , Humanos , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/genética , Cristalografia por Raios X , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo
4.
Redox Biol ; 75: 103247, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39047636

RESUMO

Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.


Assuntos
Replicação do DNA , Heme Oxigenase-1 , Animais , Humanos , Camundongos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/metabolismo , Dano ao DNA , Quadruplex G , Células HEK293 , Heme/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Camundongos Knockout , Estresse Oxidativo
5.
Adv Immunol ; 161: 109-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763699

RESUMO

Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.


Assuntos
Imunidade Adaptativa , Quadruplex G , Hematopoese , Humanos , Hematopoese/genética , Animais , DNA/imunologia , Conformação de Ácido Nucleico
7.
Cell Chem Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38821064

RESUMO

Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.

8.
Chem Biol Interact ; 395: 111031, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703805

RESUMO

Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.


Assuntos
Cobalto , DNA , DNA/química , DNA/metabolismo , Cobalto/química , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Conformação de Ácido Nucleico , Quadruplex G
9.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674009

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to raise concerns worldwide. Numerous host factors involved in SARS-CoV-2 infection have been identified, but the regulatory mechanisms of these host factor remain unclear. Here, we report the role of G-quadruplexes (G4s) located in the host factor promoter region in SARS-CoV-2 infection. Using bioinformatics, biochemical, and biological assays, we provide evidence for the presence of G4 structures in the promoter regions of SARS-CoV-2 host factors NRP1. Specifically, we focus on two representative G4s in the NRP1 promoter and highlight its importance in SARS-CoV-2 pathogenesis. The presence of the G4 structure greatly increases NRP1 expression, facilitating SARS-CoV-2 entry into cells. Utilizing published single-cell RNA sequencing data obtained from simulated SARS-CoV-2 infection in human bronchial epithelial cells (HBECs), we found that ciliated cells with high levels of NRP1 are prominently targeted by the virus during infection. Furthermore, our study identifies E2F1 act as a transcription factor that binds to G4s. These findings uncover a previously unknown mechanism underlying SARS-CoV-2 infection and suggest that targeting G4 structures could be a potential strategy for COVID-19 prevention and treatment.


Assuntos
COVID-19 , Quadruplex G , Neuropilina-1 , Regiões Promotoras Genéticas , Humanos , COVID-19/genética , COVID-19/virologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , SARS-CoV-2/fisiologia , Internalização do Vírus
10.
Biochemistry (Mosc) ; 89(Suppl 1): S262-S277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621755

RESUMO

Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.


Assuntos
Quadruplex G , DNA/metabolismo , Sódio/química , Cátions Monovalentes/química , Termodinâmica
11.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38256907

RESUMO

High-grade gliomas are considered an incurable disease. Despite all the various therapy options available, patient survival remains low, and the tumor usually returns. Tumor resistance to conventional therapy and stimulation of the migratory activity of surviving cells are the main factors that lead to recurrent tumors. When developing new treatment approaches, the effect is most often evaluated on standard and phenotypically depleted cancer cell lines. Moreover, there is much focus on the anti-proliferative effect of such therapies without considering the possible stimulation of migratory activity. In this paper, we studied how glioma cell migration changes after exposure to bi-(AID-1-T), an anti-proliferative aptamer. We investigated the effect of this aptamer on eight human glioma cell cultures (Grades III and IV) that were derived from patients' tumor tissue; the difference between primary and recurrent tumors was taken into account. Despite its strong anti-proliferative activity, bi-(AID-1-T) was shown to induce migration of recurrent tumor cells. This result shows the importance of studying the effect of therapeutic molecules on the invasive properties of glioma tumor cells in order to reduce the likelihood of inducing tumor recurrence.

12.
Photochem Photobiol ; 100(2): 262-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37365765

RESUMO

Guanine quadruplexes (GQs) are four-stranded DNA/RNA structures exhibiting an important polymorphism. During the past two decades, their study by time-resolved spectroscopy, from femtoseconds to milliseconds, associated to computational methods, shed light on the primary processes occurring when they absorb UV radiation. Quite recently, their utilization in label-free and dye-free biosensors was explored by a few groups. In view of such developments, this review discusses the outcomes of the fundamental studies that could contribute to the design of future optoelectronic biosensors using fluorescence or charge carriers stemming directly from GQs, without mediation of other molecules, as it is the currently the case. It explains how the excited state relaxation influences both the fluorescence intensity and the efficiency of low-energy photoionization, occurring via a complex mechanism. The corresponding quantum yields, determined with excitation at 266/267 nm, fall in the range of (3.0-9.5) × 10-4 and (3.2-9.2) × 10-3 , respectively. These values, significantly higher than the corresponding values found for duplexes, depend strongly on certain structural factors (molecularity, metal cations, peripheral bases, number of tetrads …) which intervene in the relaxation process. Accordingly, these features can be tuned to optimize the desired signal.


Assuntos
Quadruplex G , Raios Ultravioleta , Análise Espectral , DNA/química , Cátions
13.
Trends Cell Biol ; 34(2): 109-121, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532653

RESUMO

Regulator of telomere elongation 1 (RTEL1) is known as a DNA helicase that is important for telomeres and genome integrity. However, the diverse phenotypes of RTEL1 dysfunction, the wide spectrum of symptoms caused by germline RTEL1 mutations, and the association of RTEL1 mutations with cancers suggest that RTEL1 is a complex machine that interacts with DNA, RNA, and proteins, and functions in diverse cellular pathways. We summarize the proposed functions of RTEL1 and discuss their implications for telomere maintenance. Studying RTEL1 is crucial for understanding the complex interplay between telomere maintenance and other nuclear pathways, and how compromising these pathways causes telomere biology diseases, various aging-associated pathologies, and cancer.


Assuntos
DNA Helicases , Genoma , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Fenótipo , Telômero/genética , Telômero/metabolismo
14.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687146

RESUMO

Since the occurrence of tumours is closely associated with the telomerase function and oncogene expression, the structure of such enzymes and genes are being recognized as targets for new anticancer drugs. The efficacy of several ligands in telomerase inhibition and in the regulation of genes expression, by an effective stabilisation of G-quadruplexes (G4) DNA structures, is being considered as a promising strategy in cancer therapies. When evaluating the potential of a ligand for telomerase inhibition, the selectivity towards quadruplex versus duplex DNA is a fundamental attribute due to the large amount of double-stranded DNA in the cellular nucleus. This study reports the evaluated efficacy of three tetracationic opp-dibenzoporphyrins, a free base, and the corresponding zinc(II) and nickel(II) complexes, to stabilise G4 structures, namely the telomeric DNA sequence (AG3(T2AG3)3). In order to evaluate the selectivity of these ligands towards G4 structures, their interaction towards DNA calf thymus, as a double-strand DNA sequence, were also studied. The data obtained by using different spectroscopic techniques, such as ultraviolet-visible, fluorescence, and circular dichroism, suggested good affinity of the free-base porphyrin and of its zinc(II) complex for the considered DNA structures, both showing a pattern of selectivity for the telomeric G4 structure. A pattern of aggregation in aqueous solution was detected for both Zn(II) and Ni(II) metallo dibenzoporphyrins and the ability of DNA sequences to induce ligand disaggregation was observed.


Assuntos
Quadruplex G , Telomerase , Ligantes , DNA , Telômero/genética
15.
Biochimie ; 214(Pt A): 91-100, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562706

RESUMO

A therapeutic system with the ability to target more than one protein is an important aim of cancer therapy since tumor growth is accompanied by dysregulation of many biological pathways. G-quadruplexes (G4s) are non-canonical structures formed by guanine-rich DNA or RNA oligonucleotides, with the ability to bind to different targets. In this study, we constructed ten novel bispecific G-quadruplex conjugates based on AT11, TBA, T40214 and T40231 aptamer structures, with the ability to bind two different targets at once in cancer cells. We analyzed the physicochemical aspects and the anticancer properties of novel molecules relating them with the single G-quadruplex unit and attempted to comprehend the correlation between the structures of bispecific G-quadruplexes with their biological activity. Our studies uncovered conjugates with considerable antiproliferative potential in HeLa and MCF-7 cancer cell lines, however with relatively low thermal stability or low nuclease resistance. Three conjugates among all studied oligonucleotides possess improved antiproliferative activity in MCF-7 cell line in comparison to their single G-quadruplex units leading to up to 90% inhibition of cancer cells growth, but their inhibitory potential is rather comparable to the effect observed for mix of two separate G-quadruplex units. Importantly, the conjugation enhances oligonucleotides enzymatic stability leading to the improvement of their therapeutic profile. The comprehensive studies presented herein indicate new approach for possibly effective cancer therapy and for the design of G4-based drugs.


Assuntos
Quadruplex G , Neoplasias , Humanos , Oligonucleotídeos/farmacologia , Células HeLa , DNA/química , Neoplasias/tratamento farmacológico
16.
ChemMedChem ; 18(19): e202300271, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37649155

RESUMO

RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.


Assuntos
RNA , Bibliotecas de Moléculas Pequenas , Humanos , RNA/metabolismo , Ligantes , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , RNA Mensageiro , Proteínas
17.
Bioorg Chem ; 139: 106746, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506624

RESUMO

Tumour cells show a higher level of reactive oxygen species (ROS) than normal cells. On the basis of this difference, we designed an oxidation-responsive G-quadruplex proligand PDS-B by installing borolanylbenzyls on a well-known pyridostatin (PDS) ligand PDS-S to response high level ROS in tumour cells. The rapid oxidative degradation of the proligand to its active form PDS-S in the presence of H2O2 confirms the oxidation-responsive design. According to Förster resonance energy transfer (FRET) assays, circular dichroism (CD) spectra and confocal fluorescence imaging, PDS-B stabilizes telomeric G4 structures after oxidation with H2O2 or intracellular ROS. Apoptosis assays and cell cycle assays showed significant selectivity of PDS-B in inhibiting the proliferation of tumour cells over normal cells through responses to a high level of ROS in the formers. Further assays confirmed higher level of relative Caspase-3 activity in tumour cells than normal cells, consequently the enhanced apoptosis of the tumour cells induced by PDS-B. In summary, the results demonstrate a modification approach to solve the poor selectivity of the G4 ligand in tumour cells and cytotoxicity in normal cells.


Assuntos
Quadruplex G , Neoplasias , Humanos , Ligantes , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Proliferação de Células , Dicroísmo Circular
18.
Mol Biol (Mosk) ; 57(3): 528-536, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37326057

RESUMO

The formation of G4 structures in a DNA double helix competes with the complementary strand interaction. The local environment in DNA can change equilibrium of G4 structures, which are studied on single-stranded (ss) models by classical structural methods. A relevant task is to develop methods for detecting and localizing G4 structures in extended native double-stranded (ds) DNA in the promoter regions of the genome. The ZnP1 porphyrin derivative selectively binds to G4 structures and leads to photo-induced oxidation of guanine in ssDNA and dsDNA model systems. We have shown the oxidative effect of ZnP1 on native sequences of MYC and TERT oncogene promoters, which can form G4 structures. Single-strand breaks in the guanine-rich sequence because of ZnP1 oxidation and subsequent cleavage of the DNA strand with Fpg glycosylase have been identified and assigned to the nucleotide sequence. The detected break sites have been shown to correspond to sequences capable of forming G4 structures. Thus, we have demonstrated the possibility of using porphyrin ZnP1 for the identification and localization of G4 quadruplexes in extended regions of the genome. Here we have shown the novel data on a possibility of folding G4 structures in the presence of complementary strand in native DNA double helix.


Assuntos
Quadruplex G , Porfirinas , Porfirinas/genética , DNA/genética , DNA/química , Regiões Promotoras Genéticas , Guanina/química , Estresse Oxidativo
19.
Int J Biol Macromol ; 245: 125443, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37353131

RESUMO

ABCA1 has been found to be critical for cholesterol efflux in macrophages. Understanding the mechanism regulating ABCA1 expression is important for the prevention and treatment of atherosclerosis. In the present study, a G-quadruplex (G4) structure was identified in the ABCA1 promoter region. This G4 was shown to be essential for ABCA1 transcription. Stabilizing the G4 by ligands surprisingly upregulated ABCA1 expression in macrophages. Knocking out the G4 remarkably reduced ABCA1 expression, and abolished the increase of ABCA1 expression induced by the G4 ligand. By pull-down assays, the protein NONO was identified as an ABCA1 G4 binder. Overexpression or repression of NONO significantly induced upregulation and downregulation of ABCA1 expression, respectively. ChIP and EMSA experiments showed that the G4 ligand promoted the binding between the ABCA1 G4 and NONO, which led to more recruitment of NONO to the promoter region and enhanced ABCA1 transcription. Finally, the G4 ligand was shown to significantly reduce the accumulation of cholesterol in macrophages. This study showed a new insight into the regulation of gene expression by G4, and provided a new molecular mechanism regulating ABCA1 expression in macrophages. Furthermore, the study showed a possible novel application of the G4 ligand: preventing and treating atherosclerosis.


Assuntos
Aterosclerose , Macrófagos , Humanos , Ligantes , Macrófagos/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/genética , Aterosclerose/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
20.
Pharmaceutics ; 15(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37242656

RESUMO

In order to develop new anti-cancer drugs more efficiently and reduce side effects based on active drug targets, the virtual drug screening was carried out through the target of G-quadruplexes and 23 hit compounds were, thus, screened out as potential anticancer drugs. Six classical G-quadruplex complexes were introduced as query molecules, and the three-dimensional similarity of molecules was calculated by shape feature similarity (SHAFTS) method so as to reduce the range of potential compounds. Afterwards, the molecular docking technology was utilized to perform the final screening followed by the exploration of the binding between each compound and four different structures of G-quadruplex. In order to verify the anticancer activity of the selected compounds, compounds 1, 6 and 7 were chosen to treat A549 cells in vitro, the lung cancer epithelial cells, for further exploring their anticancer activity. These three compounds were found to be of good characteristics in the treatment of cancer, which revealed the great application prospect of the virtual screening method in developing new drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA