Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2797: 237-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570464

RESUMO

The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de ras GTPase , Guanosina Trifosfato/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Hidrólise , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espectroscopia de Ressonância Magnética , Guanosina Difosfato/metabolismo
2.
FASEB J ; 30(4): 1643-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26718888

RESUMO

Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5'-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.-Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane.


Assuntos
Membrana Celular/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Domínio Catalítico , Guanosina Difosfato/química , Guanosina Trifosfato/química , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Células NIH 3T3 , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química
3.
Small GTPases ; 5(2): 9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483299

RESUMO

The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.


Assuntos
Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-vav/química , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA