Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cancer Cell ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39303724

RESUMO

Microsatellite stable (MSS) colorectal cancers (CRCs) are often resistant to anti-programmed death-1 (PD-1) therapy. Here, we show that a CRC pathogen, Fusobacterium nucleatum (Fn), paradoxically sensitizes MSS CRC to anti-PD-1. Fecal microbiota transplantation (FMT) from patients with Fn-high MSS CRC to germ-free mice bearing MSS CRC confers sensitivity to anti-PD-1 compared to FMT from Fn-low counterparts. Single Fn administration also potentiates anti-PD-1 efficacy in murine allografts and CD34+-humanized mice bearing MSS CRC. Mechanistically, we demonstrate that intratumoral Fn generates abundant butyric acid, which inhibits histone deacetylase (HDAC) 3/8 in CD8+ T cells, inducing Tbx21 promoter H3K27 acetylation and expression. TBX21 transcriptionally represses PD-1, alleviating CD8+ T cell exhaustion and promoting effector function. Supporting this notion, knockout of a butyric acid-producing gene in Fn abolishes its anti-PD-1 boosting effect. In patients with MSS CRC, high intratumoral Fn predicts favorable response to anti-PD-1 therapy, indicating Fn as a potential biomarker of immunotherapy response in MSS CRC.

2.
Cell Genom ; 4(8): 100605, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38981476

RESUMO

Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.


Assuntos
Adenosina , Metilação de DNA , Epigenômica , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Epigenômica/métodos , Epigênese Genética , Epigenoma/genética , Transcriptoma , Histonas/metabolismo , Histonas/genética
3.
Clin Epigenetics ; 16(1): 91, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014511

RESUMO

BACKGROUND: Doxorubicin (Dox) is an effective chemotherapeutic drug for various cancers, but its clinical application is limited by severe cardiotoxicity. Dox treatment can transcriptionally activate multiple cardiotoxicity-associated genes in cardiomyocytes, the mechanisms underlying this global gene activation remain poorly understood. METHODS AND RESULTS: Herein, we integrated data from animal models, CUT&Tag and RNA-seq after Dox treatment, and discovered that the level of H3K27ac (a histone modification associated with gene activation) significantly increased in cardiomyocytes following Dox treatment. C646, an inhibitor of histone acetyltransferase, reversed Dox-induced H3K27ac accumulation in cardiomyocytes, which subsequently prevented the increase of Dox-induced DNA damage and apoptosis. Furthermore, C646 alleviated cardiac dysfunction in Dox-treated mice by restoring ejection fraction and reversing fractional shortening percentages. Additionally, Dox treatment increased H3K27ac deposition at the promoters of multiple cardiotoxic genes including Bax, Fas and Bnip3, resulting in their up-regulation. Moreover, the deposition of H3K27ac at cardiotoxicity-related genes exhibited a broad feature across the genome. Based on the deposition of H3K27ac and mRNA expression levels, several potential genes that might contribute to Dox-induced cardiotoxicity were predicted. Finally, the up-regulation of H3K27ac-regulated cardiotoxic genes upon Dox treatment is conservative across species. CONCLUSIONS: Taken together, Dox-induced epigenetic modification, specifically H3K27ac, acts as a molecular switch for the activation of robust cardiotoxicity-related genes, leading to cardiomyocyte death and cardiac dysfunction. These findings provide new insights into the relationship between Dox-induced cardiotoxicity and epigenetic regulation, and identify H3K27ac as a potential target for the prevention and treatment of Dox-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Histonas , Miócitos Cardíacos , Doxorrubicina/efeitos adversos , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Histonas/metabolismo , Histonas/genética , Camundongos , Cardiotoxicidade/genética , Cardiotoxicidade/etiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Epigênese Genética/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Antibióticos Antineoplásicos/efeitos adversos , Masculino , Humanos
4.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005660

RESUMO

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

5.
Mol Carcinog ; 63(10): 1874-1891, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38888205

RESUMO

The search for novel tumor biomarkers and targets is of significant importance for the early clinical diagnosis and treatment of Hepatocellular Carcinoma (HCC). The mechanisms by which ATP citrate lyase (ACLY) promotes HCC progression remain unclear, and the connection between ACLY and REGγ has not been reported in the literature. In vitro, we will perform overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to investigate the impact of ACLY on HCC cells and its underlying mechanisms. In vivo, we will establish mouse tumor models with overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to study the effect of ACLY on mouse tumors and its mechanisms. Firstly, ACLY overexpression upregulated REGγ expression and activated the REGγ-proteasome pathway, leading to changes in the expression of downstream signaling pathway proteins. This promoted HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Secondly, ACLY overexpression increased acetyl-CoA production, upregulated the acetylation level of the REGγ promoter region histone H3K27ac, and subsequently induced REGγ expression. Lastly, enhanced acetylation of the REGγ promoter region histone H3K27ac resulted in upregulated REGγ expression, activation of the REGγ-proteasome pathway, changes in downstream signaling pathway protein expression, and promotion of HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Conversely, REGγ knockdown reversed these effects. ACLY and REGγ may serve as potential biomarkers and clinical therapeutic targets for HCC.


Assuntos
ATP Citrato (pro-S)-Liase , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Complexo de Endopeptidases do Proteassoma , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/genética , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Humanos , Camundongos , Linhagem Celular Tumoral , Autoantígenos/metabolismo , Autoantígenos/genética , Transdução de Sinais , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Masculino
7.
Clin Transl Med ; 14(6): e1692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804602

RESUMO

BACKGROUND: Although numerous studies have indicated that activated pyroptosis can enhance the efficacy of antitumour therapy in several tumours, the precise mechanism of pyroptosis in colorectal cancer (CRC) remains unclear. METHODS: Pyroptosis in CRC cells treated with antitumour agents was assessed using various techniques, including Western blotting, lactate dehydrogenase release assay and microscopy analysis. To uncover the epigenetic mechanisms that regulate NLRP3, chromatin changes and NLRP3 promoter histone modifications were assessed using Assay for Transposase-Accessible Chromatin using sequencing and RNA sequencing. Chromatin immunoprecipitation‒quantitative polymerase chain reaction was used to investigate the NLRP3 transcriptional regulatory mechanism. Additionally, xenograft and patient-derived xenograft models were constructed to validate the effects of the drug combinations. RESULTS: As the core molecule of the inflammasome, NLRP3 expression was silenced in CRC, thereby limiting gasdermin D (GSDMD)-mediated pyroptosis. Supplementation with NLRP3 can rescue pyroptosis induced by antitumour therapy. Overexpression of HDAC2 in CRC silences NLRP3 via epigenetic regulation. Mechanistically, HDAC2 suppressed chromatin accessibility by eliminating H3K27 acetylation. HDAC2 knockout promotes H3K27ac-mediated recruitment of the BRD4-p-P65 complex to enhance NLRP3 transcription. Inhibiting HDAC2 by Santacruzamate A in combination with classic antitumour agents (5-fluorouracil or regorafenib) in CRC xenograft-bearing animals markedly activated pyroptosis and achieved a significant therapeutic effect. Clinically, HDAC2 is inversely correlated with H3K27ac/p-P65/NLRP3 and is a prognostic factor for CRC patients. CONCLUSION: Collectively, our data revealed a crucial role for HDAC2 in inhibiting NLRP3/GSDMD-mediated pyroptosis in CRC cells and highlighted HDAC2 as a potential therapeutic target for antitumour therapy. HIGHLIGHTS: Silencing of NLRP3 limits the GSDMD-dependent pyroptosis in colorectal cancer. HDAC2-mediated histone deacetylation leads to epigenetic silencing of NLRP3. HDAC2 suppresses the NLRP3 transcription by inhibiting the formation of H3K27ac/BRD4/p-P65 complex. Targeting HDAC2 activates pyroptosis and enhances therapeutic effect.


Assuntos
Neoplasias Colorretais , Gasderminas , Histona Desacetilase 2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Gasderminas/metabolismo , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato , Piroptose/efeitos dos fármacos , Piroptose/genética
8.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791299

RESUMO

Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.


Assuntos
Colo , Metilação de DNA , Epigênese Genética , Histonas , Músculo Liso , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G , Animais , Feminino , Masculino , Camundongos , Colo/metabolismo , Colo/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Histonas/metabolismo , Camundongos Endogâmicos NOD , Músculo Liso/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estômago/patologia
9.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38717933

RESUMO

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Assuntos
Aromatase , Regulação da Expressão Gênica , Placenta , Estabilidade de RNA , Fator de Transcrição AP-2 , Regiões Promotoras Genéticas , Aromatase/genética , Humanos , Linhagem Celular , Placenta/citologia , Placenta/metabolismo , Proteína de Ligação a CREB/metabolismo , Cromatina , Fator de Transcrição AP-2/metabolismo , Adenosina/análogos & derivados , Adenosina/uso terapêutico
10.
ACS Nano ; 18(17): 11103-11119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623806

RESUMO

In recent years, carbon nanotubes have emerged as a widely used nanomaterial, but their human exposure has become a significant concern. In our former study, we reported that pulmonary exposure of multiwalled carbon nanotubes (MWCNTs) promoted tumor metastasis of breast cancer; macrophages were key effectors of MWCNTs and contributed to the metastasis-promoting procedure in breast cancer, but the underlying molecular mechanisms remain to be explored. As a follow-up study, we herein demonstrated that MWCNT exposure in breast cancer cells and macrophage coculture systems promoted metastasis of breast cancer cells both in vitro and in vivo; macrophages were skewed into M2 polarization by MWCNT exposure. LncRNA NBR2 was screened out to be significantly decreased in MWCNTs-stimulated macrophages through RNA-seq; depletion of NBR2 led to the acquisition of M2 phenotypes in macrophages by activating multiple M2-related pathways. Specifically, NBR2 was found to positively regulate the downstream gene TBX1 through H3k27ac activation. TBX1 silence rescued NBR2-induced impairment of M2 polarization in IL-4 & IL-13-stimulated macrophages. Moreover, NBR2 overexpression mitigated the enhancing effects of MWCNT-exposed macrophages on breast cancer metastasis. This study uncovered the molecular mechanisms underlying breast cancer metastasis induced by MWCNT exposure.


Assuntos
Neoplasias da Mama , Macrófagos , Nanotubos de Carbono , Nanotubos de Carbono/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Camundongos , Animais , Proteínas com Domínio T/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
11.
Curr Cancer Drug Targets ; 24(12): 1222-1234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347779

RESUMO

OBJECTIVE: Long non-coding RNAs (lncRNAs) are of great importance in the process of colorectal cancer (CRC) tumorigenesis and progression. However, the functions and underlying molecular mechanisms of the majority of lncRNAs in CRC still lack clarity. METHODS: A Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect lncRNA NUTM2A-AS1 expression in CRC cell lines. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to examine the biological functions of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of CRC cells. RT-qPCR and western blot were implemented for the detection of cell proliferation-, apoptosis-related proteins, and FAM3C. Bioinformatics analysis and dual- luciferase reporter assays were utilized to identify the mutual regulatory mechanism of ceRNAs. RESULTS: lncRNA NUTM2A-AS1 notably elevated in CRC cell lines and the silenced of NUTM2A- AS1 declined proliferation and facilitated apoptosis. Mechanistically, NUTM2A-AS1 was transcriptionally activated by histone H3 on lysine 27 acetylation (H3K27ac) enriched at its promoter region, and NUTM2A-AS1 acted as a sponge for miR-126-5p, leading to the upregulation of FAM3C expression in CRC cell lines. CONCLUSION: Our research proposed NUTM2A-AS1 as an oncogenic lncRNA that facilitates CRC malignancy by upregulating FAM3C expression, which might provide new insight and a promising therapeutic target for the diagnosis and treatment of CRC.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Progressão da Doença , Histonas/metabolismo , Histonas/genética , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
12.
Cancer Cell Int ; 24(1): 81, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383388

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS: Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS: ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.

13.
Int J Oncol ; 64(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38240084

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced tumor stages with chemotherapy as the only treatment option. Transcriptomic analysis has defined a classical and basal­like PDAC subtype, which are regulated by epigenetic modification. The present study aimed to determine if drug­induced epigenetic reprogramming of pancreatic cancer cells affects PDAC subtype identity and chemosensitivity. Classical and basal­like PDAC cell lines PaTu­S, Capan­1, Capan­2, Colo357, PaTu­T, PANC­1 and MIAPaCa­2, were treated for a short (up to 96 h) and long (up to 30 weeks) period with histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. The cells were analyzed using gene expression approaches, immunoblot analysis, and various cell assays to assess cell characteristics, such as proliferation, colony formation, cell migration and sensitivity to chemotherapeutic drugs. Classical and basal­like PDAC cell lines showed pronounced epigenetic regulation of subtype­specific genes through acetylation of lysine 27 on Histone H3 (H3K27ac). Moreover, classical cell lines revealed a significantly decreased expression of HDAC2 and increased total levels of H3K27ac in comparison with the basal­like cell lines. Following HAT inhibitor treatment, classical cell lines exhibited a loss of epithelial marker gene expression, decreased chemotherapy response gene score and increased cell migration in vitro, indicating a tumor­promoting phenotype. HDAC inhibitor treatment, however, exerted minimal reprogramming effects in both subtypes. Epigenetic reprogramming of classical and basal­like tumor cells did not have a major impact on gemcitabine response, although the gemcitabine transporter gene SLC29A1 (solute carrier family 29 member 1) was epigenetically regulated.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Histonas/genética , Histonas/metabolismo , Gencitabina , Epigênese Genética , Acetilação , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
14.
Int J Biol Sci ; 20(3): 968-986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250161

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic matrix deposition and irreversible aberrant tissue remodeling. Their mechanisms of action are associated with the activation of macrophages and a disturbed immune environment. We aim to determine how these activated macrophages influenced the pathogenesis of pulmonary fibrosis. We found the fibrotic areas of IPF patients contained more serum and glucocorticoid-induced kinase 1 (SGK1)-positive and M2-type macrophages. Similarly, bleomycin (BLM)+LPS significantly triggered high expression of SGK1 in the IPF mice, accompanied by destroyed lung structure and function, increased fibrosis markers and disturbed immune microenvironment. Mechanistically, SGK1 markedly promoted the reprogramming of M2-type macrophages in fibrotic lungs by triggering glycogen synthase kinase 3beta (GSK3ß)-tat-interacting protein 60 (TIP60)- histone-3 lysine-27 acetylation (H3K27ac) signalings, which further released chemokine (C-C motif) ligand 9 (CCL9) to attract Th17 cells and delivered TGF-ß to fibroblasts for synergistically destroying immune microenvironment, which was largely reversed by macrophage depletion in mice. We took macrophages as the entry point to deeply analyze IPF pathogenesis and further provided insights for the development of novel drugs represented by SGK1.


Assuntos
Glucocorticoides , Fibrose Pulmonar Idiopática , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Acetilação , Homeostase , Macrófagos
15.
Cell Signal ; 116: 111044, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211842

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal histotype of ovarian cancer due to its unspecific symptoms in part. ALDH1A3 (aldehyde dehydrogenase 1 family member A3) is a key enzyme for acetyl-CoA production involving aggressive behaviors of cancers. However, ALDH1A3's effects and molecular mechanisms in HGSOC remain to be clarified. Using RNA-seq and publicly available datasets, ALDH1A3 was found to be highly expressed in HGSOC, and associated with poor survival. Knockdown of ALDH1A3 prevented HGSOC tumorigenesis and enhanced cell sensitivity to paclitaxel or cisplatin. ALDH1A3 expression in HGSOC cells was found to be increased by hypoxia, but decreased by HIF-1α inhibitor KC7F2. The dual-luciferase reporter assay showed that the increased transcriptional activity of ALDH1A3 induced by HIF-1α overexpression was reduced by KC7F2. In addition, PITX1 (paired like homeodomain 1) was identified to be inhibited by ALDH1A3 knockdown, and PITX1 depletion inhibited cell proliferation. The mechanistic studies showed that ALDH1A3 knockdown reduced the acetylation of histone 3 lysine 27 (H3K27ac). Treatment of exogenous acetate with NaOAc or inhibition of histone deacetylase with Pracinostat increased H3K27ac and PITX1 levels. CHIP assay demonstrated a significant enrichment of H3K27ac at the PITX1 promoter, and ALDH1A3 knockdown reduced the binding between H3K27ac and PITX1. Taken together, our data suggest that ALDH1A3, transcriptional activated by HIF-1α, promotes tumorigenesis and decreases chemosensitivity by increasing H3K27ac of PITX1 promoter in HGSOC.


Assuntos
Carcinogênese , Neoplasias Ovarianas , Feminino , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Ovarianas/genética , Epigênese Genética , Acetilação
16.
Mol Genet Genomics ; 299(1): 3, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236481

RESUMO

Epidermal growth factor receptor (EGFR) has been shown to be overexpressed in human cancers due to mutation, amplification, and epigenetic hyperactivity, which leads to deregulated transcriptional mechanism. Among the eight different EGFR isoforms, the mechanism of regulation of full-length variant 1 is well-known, no studies have examined the function & factors regulating the expression of variant 8. This study aimed to understand the function of EGFR super-enhancer loci and its associated transcription factors regulating the expression of EGFR variant 8. Our study shows that overexpression of variant 8 and its transcription was more prevalent than variant 1 in many cancers and positively correlated with the EGFR-AS1 expression in oral cancer and HNSCC. Notably, individuals overexpressing variant 8 showed shorter overall survival and had a greater connection with other clinical traits than patients with overexpression of variant 1. In this study, TCGA enhancer RNA profiling on the constituent enhancer (CE1 and CE2) region revealed that the multiple enhancer RNAs formed from CE2 by employing CE1 as a promoter. Our bioinformatic analysis further supports the enrichment of enhancer RNA specific chromatin marks H3K27ac, H3K4me1, POL2 and H2AZ on CE2. GeneHancer and 3D chromatin capture analysis showed clustered interactions between CE1, CE2 loci and this interaction may regulates expression of both EGFR-eRNA and variant 8. Moreover, increased expression of SNAI2 and its close relationship to EGFR-AS1 and variant 8 suggest that SNAI2 could regulates variant 8 overexpression by building a MegaTrans complex with both EGFR-eRNA and EGFR-AS1. Our findings show that EGFR variant 8 and its transcriptional regulation & chromatin modification by eRNAs may provide a rationale for targeting RNA splicing in combination with targeted EGFR therapies in cancer.


Assuntos
RNAs Intensificadores , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Super Intensificadores , Receptores ErbB/genética , Cromatina/genética , Neoplasias de Cabeça e Pescoço/genética
17.
Biochem Biophys Res Commun ; 693: 149374, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38096616

RESUMO

Cervical cancer, a common malignancy in women, poses a significant health burden worldwide. In this study, we aimed to investigate the expression, function, and potential mechanisms of NADH: ubiquinone oxidoreductase subunit A8 (NDUFA8) in cervical cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) database and immunohistochemical scoring were used to analyze NDUFA8 expression in cervical cancer tissues and normal tissues. Quantitative real-time PCR and Western blot analyses were performed to assess the expression level of NDUFA8 in cervical cancer cell lines. NDUFA8 knockdown or overexpression experiments were conducted to evaluate its impact on cell proliferation and apoptosis. The mitochondrial respiratory status was analyzed by measuring cellular oxygen consumption, adenosine triphosphate (ATP) levels, and the expression levels of Mitochondrial Complex I activity, and Mitochondrial Complex IV-associated proteins Cytochrome C Oxidase Subunit 5B (COX5B) and COX6C. NDUFA8 exhibited high expression levels in cervical cancer tissues, and these levels were correlated with reduced survival rates. A significant upregulation of NDUFA8 expression was observed in cervical cancer cell lines compared to normal cells. Silencing NDUFA8 hindered cell proliferation, promoted apoptosis, and concurrently suppressed cellular mitochondrial respiration, resulting in decreased levels of available ATP. Conversely, NDUFA8 overexpression induced the opposite effects. Herein, we also found that E1A Binding Protein P300 (EP300) overexpression facilitated Histone H3 Lysine 27 (H3K27) acetylation enrichment, enhancing the activity of the NDUFA8 promoter region. NDUFA8, which is highly expressed in cervical cancer, is regulated by transcriptional control via EP300/H3K27 acetylation. By promoting mitochondrial respiration, NDUFA8 contributes to cervical cancer cell proliferation and apoptosis. These findings provide novel insights into NDUFA8 as a therapeutic target in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Fatores de Transcrição/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Apoptose/genética , Proliferação de Células/genética , Respiração , Trifosfato de Adenosina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo
18.
Cancers (Basel) ; 15(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067284

RESUMO

Olaparib suppresses DNA damage repair by inhibiting the poly ADP ribose polymerase (PARP), especially in cancers with BRCA1/2 mutations or the BRCA-ness phenotype. However, the first trials showed that some patients with defective DNA damage repair are still resistant to olaparib. The recovery of the wildtype BRCA is a prominent mechanism of PARP inhibitor (PARPi) resistance in BRCA-deficient tumors, but additional molecular features of olaparib resistance remain poorly understood. The objective of our study was to find molecular parameters that contribute to olaparib response or resistance in CRC. We report that histone acetyltransferase KAT2B decreases BRCA2 expression by reducing the acetylation of the 27th amino acid in histone H3 (H3K27) at the promoter of the BRCA2 gene in colorectal cancer (CRC). This increases the sensitivity of CRC cells toward olaparib treatment. The H3K27ac binding domain of BRCA2 may be required for its transcription. Low endogenous KAT2B expression, which we identify in a subset of cultured BRCA2-expressing CRC cells, leads to an accumulation of γH2AX (more DNA damage), resulting in low PARPi resistance in BRCA-expressing cells. Our results reveal KAT2B and histone acetylation as regulators of BRCA2 expression and PARPi responses in BRCA2-expressing CRC cells, providing further insights into molecular prerequisites for targeting BRCA-functional tumors.

19.
Elife ; 122023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011375

RESUMO

Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology; however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.


Assuntos
Regulação da Expressão Gênica , Histona Desacetilases , Camundongos , Animais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Diferenciação Celular/genética , Células Dendríticas
20.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751740

RESUMO

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Assuntos
Osteoclastos , RNA , Humanos , Camundongos , Animais , Proteínas Correpressoras/genética , Osteoclastos/metabolismo , Ligante RANK/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA