Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Autophagy ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39461872

RESUMO

Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates TFEB transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces TFEB transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the TFEB proximal promoter region. Decreased TFEB transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-TFEB-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low TFEB-triggered-MDVs formation caused by HSP90 inhibitors.

2.
Free Radic Res ; : 1-10, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258904

RESUMO

Prostaglandin E2 (PGE2) interacts with four specific G protein-coupled receptors, namely EP1, EP2, EP3, and EP4, playing a pivotal role in determining the fate of cells. Our previous findings highlighted that stimulating the EP4 receptor with its agonist, CAY10598, triggers apoptosis in colon cancer HCT116 cells via the production of reactive oxygen species (ROS). This process also reduces the phosphorylation of the oncogenic protein JAK2 and leads to its degradation in these cells. In this study, our goal was to explore the pathways through which CAY10598 leads to JAK2 degradation. We focused on Hsp90, a heat shock protein family member known for its role as a molecular chaperone maintaining the stability of several key proteins including EGFR, MET, Akt, and JAK2. Our results show that CAY10598 decreases the levels of client proteins of Hsp90 in HCT116 cells, an effect reversible by pretreatment with the ROS scavenger N-acetyl cysteine (NAC) or the proteasome inhibitor MG132, indicating that the degradation is likely driven by ROS. Furthermore, we observed that CAY10598 cleaves both α and ß isoforms of Hsp90, the process inhibited by NAC. Inhibition of EP4 with the antagonist GW627368x not only prevented the degradation of Hsp90 client proteins but also the cleavage of Hsp90 itself in CAY10598-treated HCT116 cells. Additionally, CAY10598 suppressed the growth of HCT116 cells implanted in mice. Our findings reveal that CAY10598 induces apoptosis in cancer cells by a novel mechanism involving the ROS-dependent cleavage of Hsp90, thereby inhibiting the function of crucial Hsp90 client proteins.

3.
Asian Pac J Cancer Prev ; 25(9): 3293-3300, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39342609

RESUMO

OBJECTIVE: This study aimed to assess linagliptin's inhibitory effects on the proliferation of cervical cancer cell lines and investigate its potential for targeting human heat shock protein 90. METHODS: Linagliptin's cytotoxicity was assessed on a cervical cancer cell line (Hela cancer cell line) at two different incubation periods, 24 and 72 hours. The molecular docking between linagliptin and the receptor protein human Hsp 90 (PDB code: 5XRE) was performed using the Biovia Discovery Studio and AutoDock tool software. The Discovery Studio visualizer generated three-dimensional (3D) and two-dimensional (2D) interactive images. RESULTS: The study's cytotoxicity results demonstrated that linagliptin can inhibit the proliferation of cervical cancer cells. The cytotoxicity exhibited a time-dependent pattern (cell cycle specific). The molecular docking study was conducted to investigate the interaction between linagliptin and human Hsp90. The study identified 11 sites where linagliptin can bind to Hsp90 amino acid residues. The total docking score for this interaction was -10.3 kcal/mol. The most potent binding occurred through conventional hydrogen bonds with the ASP:54 amino acid residues at a distance of 2.93 Å. The docking scores for linagliptin were comparable to those of the reference drug geldanamycin, indicating a strong interaction between linagliptin and Hsp90. CONCLUSION: The study has found that linagliptin successfully reduces the growth of cervical cancer cells with a time-dependent cytotoxic pattern. The potential anticancer mechanism of linagliptin can be inferred by analyzing the docking score and docking pattern between linagliptin and Hsp90, suggesting that linagliptin targets human Hsp 90.


Assuntos
Proliferação de Células , Proteínas de Choque Térmico HSP90 , Linagliptina , Simulação de Acoplamento Molecular , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Linagliptina/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Tumorais Cultivadas , Ciclo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células HeLa
4.
Mol Pharm ; 21(10): 5238-5246, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39316366

RESUMO

Heat shock protein 90 (Hsp90) is a promising target for cancer therapy and imaging. Accurate detection of Hsp90 levels in tumors via noninvasive PET imaging might be beneficial for management. To achieve this, the precursor compound Dimer-Sansalvamide A (Dimer-San A) was PEGylated and modified by conjugating it with the bifunctional chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The 18F-labeled PEGylated Dimer-SanA decapeptide (18F-PEGylated San A) was completed within 30 min using a two-step process. In vitro stability and specificity were assessed, including competition studies with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). MicroPET imaging was performed on PL45 tumor-bearing mice to evaluate probe accumulation and tumor-to-muscle ratios. Biodistribution studies determined the route of excretion. The probe resulted in a radiochemical yield of 23.11% with a purity exceeding 95%. In vitro, 18F-PEGylated San A exhibited high stability and selectively accumulated in Hsp90-positive PL45 cells, with binding effectively blocked by the Hsp90 inhibitor 17AAG, confirming its specificity. MicroPET imaging of PL45 tumor-bearing mice showed significant probe accumulation in tumor tissues at 1 and 2 h postinjection (4.06 ± 0.30 and 3.72 ± 0.61%ID/g, respectively), with optimal tumor-to-muscle ratios observed at 2 h postinjection (6.09 ± 1.92). While 18F-PEGylated San A demonstrates enhanced water solubility, as indicated by increased kidney uptake relative to liver accumulation. The study successfully incorporated PEG units to create the novel probe 18F-PEGylated San A targeting to Hsp90 without affecting its targeting capability, aimed at improving the pharmacokinetics and PET imaging of Hsp90 expression noninvasively.


Assuntos
Radioisótopos de Flúor , Proteínas de Choque Térmico HSP90 , Lactamas Macrocíclicas , Neoplasias Pancreáticas , Polietilenoglicóis , Tomografia por Emissão de Pósitrons , Animais , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos , Radioisótopos de Flúor/química , Distribuição Tecidual , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Humanos , Linhagem Celular Tumoral , Polietilenoglicóis/química , Lactamas Macrocíclicas/farmacocinética , Lactamas Macrocíclicas/farmacologia , Feminino , Camundongos Nus , Compostos Radiofarmacêuticos/farmacocinética , Benzoquinonas/farmacocinética , Benzoquinonas/química , Benzoquinonas/farmacologia
5.
ChemMedChem ; : e202400418, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153203

RESUMO

Heat Shock Protein 90 (Hsp90) is responsible for the proper folding and maturation of ~400 client protein substrates, many of which are directly associated with the ten hallmarks of cancer. Hsp90 is a great target for cancer therapy including melanoma, since Hsp90 inhibition can disrupt multiple oncogenic pathways simultaneously. In this study, we report the synthesis and anti-proliferative activity manifested by a series of Hsp90 C-terminal inhibitors against mutant BRAF and wild-type BRAF melanoma cells. Furthermore, we explored structure-activity relationships (SAR) for the amide moiety of 6 (B1), a novel Hsp90C-terminal inhibitor via introduction of amide bioisosteres. Compound 6 displayed an IC50 of 1.01 µM, 0.782 µM, 0.607 µM and 1.413 µM against SKMel173, SKMel103, SKMel19 and A375 cells, respectively.

6.
Exp Neurol ; 380: 114922, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142371

RESUMO

OBJECTIVE: Multiple factors contribute to the development of perioperative neurocognitive disorders (PND). This study was designed to investigate whether Histone Deacetylase 6 (HDAC6) was involved in the formation of postoperative cognitive dysfunction in elderly mice by regulating the degree of acetylation of heat shock protein (HSP90) and related protein functions and quantities. METHODS: C57BL/6 J male mice were randomly divided into six groups: control naive (group Control), anesthesia (group Anesthesia), splenectomy surgery (group Surgery), splenectomy surgery plus dissolvent (group Vehicles), splenectomy surgery plus the inhibitor ACY-1215 (group Ricolinostat), and splenectomy surgery plus the inhibitor RU-486(group Mifepristone). After the mice were trained for Morris Water Maze (MWM) test for five days, anesthesia and operational surgery were carried out the following day. Cognitive function was assessed on the 1st, 3rd and 7th days post-surgery. The hippocampi were harvested on days 1, 3, and 7 post-surgeries for Western blots and ELISA assays. RESULTS: Mice with the splenectomy surgery displayed the activation of the hypothalamic-pituitary-adrenal axis (HPA-axis), marked an increase in adrenocorticotropic hormone (ACTH), glucocorticoid, mineralocorticoid at the molecular level and impaired spatial memory in the MWM test. The hippocampus of surgical groups showed a decrease in acetylated HSP90, a rise in glucocorticoid receptor (GR)-HSP90 association, and an increase in GR phosphorylation and translocation. HDAC6 was increased after the surgical treated. Using two specific inhibitors, HDAC6 inhibitor Ricolinostat (ACY-1215) and GR inhibitor Mifepristone (RU-486), can partially mitigate the effects caused by surgical operation. CONCLUSIONS: Abdominal surgery may impair hippocampal spatial memory, possibly through the HDAC6-triggered increase in the function of HSP90, consequently strengthening the negative role of steroids in cognitive function. Targeting HDAC6- HSP90/GR signaling may provide a potential avenue for the treatment of the impairment of cognitive function after surgery.


Assuntos
Proteínas de Choque Térmico HSP90 , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides , Transdução de Sinais , Animais , Masculino , Camundongos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Esplenectomia , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Mifepristona/farmacologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/etiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Envelhecimento/metabolismo , Histona Desacetilases/metabolismo , Pirimidinas/farmacologia , Ácidos Hidroxâmicos/farmacologia
7.
Eur J Med Chem ; 277: 116736, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126794

RESUMO

Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Neoplasias , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Progressão da Doença
8.
Mol Biotechnol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162909

RESUMO

Non-alcoholic fatty acid liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) are the fatal liver diseases which encompass a spectrum of disease severity associated with increased risk of type 2 diabetes mellitus (T2DM), a metabolic disorder. Heat shock proteins serve as markers in early prognosis and diagnosis of early stages of liver diseases associated with metabolic disorder. This review aims to comprehensively investigate the significance of HSP90 isoforms in T2DM and liver diseases. Additionally, we explore the collective knowledge on plant-based drug compounds that regulate HSP90 isoform targets, highlighting their potential in treating T2DM-associated liver diseases. Furthermore, this review focuses on the computational systems' biology and next-generation sequencing technology approaches that are used to unravel the potential medicine for the treatment of pleiotropy of these 2 diseases and to further elucidate the mechanism.

9.
J Med Biochem ; 43(4): 460-468, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-39139173

RESUMO

Background: To investigate the expression of miR-21, heat shock protein-90a (HSP90a) and G protein-coupled receptorrelated sorting protein 1(GASP-1) in the serum of lung cancer patients and their correlation with pathological subtypes. Methods: Eighty patients with lung cancer were included in the lung cancer group from May 2020 to May 2022, and 40 volunteers who underwent physical examination were randomly included in the control group according to the group ratio of 2:1. This ratio balances the need for a sufficiently large experimental group to detect significant effects with the practicality of recruiting a manageable control group. To ensure the validity of our findings, we meticulously calculated the sample size to achieve adequate statistical power, thus enabling us to draw reliable conclusions. Serum miR-21, HSP90a and GASP-1 levels of patients in the two groups were detected. We quantitatively assessed the serum levels of miR-21, HSP90a, and GASP1 in lung cancer patients and healthy volunteers. We employed enzyme-linked immunosorbent assay (ELISA) for HSP90a and GASP-1, and reverse transcription-polymerase chain reaction (RT-PCR) for miR-21, ensuring precise quantification. To explore the correlation between it and pathological subtypes, TNM stage and lymph node metastasis of lung cancer patients. TNM stands for Tumor, Node, and Metastasis. This system is widely used for staging cancer and describes the size and extent of the primary tumor (T), the absence or presence of cancer in nearby lymph nodes (N), and whether the cancer has spread to other parts of the body (M). Results: The serum levels of miR-21, HSP90a and GASP1 in lung cancer group were higher than those in control group (P < 0.05). ROC curve analysis showed that serum miR-21, HSP90a and GASP-1 levels had certain value in the diagnosis of lung cancer, and their AUC values were 0.901, 0.874 and 0.865, respectively (P < 0.05). There was no difference in the relative expression level of serum miR-21 between squamous cell carcinoma group and adenocarcinoma group (P>0.05), but the levels of HSP90a and GASP-1 in adenocarcinoma group were higher than those in squamous cell carcinoma group (P < 0.05). There was no difference in the levels of serum miR-21, HSP90a and GASP-1 between stage I and stage II groups (P>0.05). The levels of serum miR-21, HSP90a and GASP-1 in stage III and stage IV groups were higher than those in stage I and stage II groups, and those in stage IV were higher than those in stage III group (P < 0.05). The serum levels of miR-21, HSP90a and GASP-1 in patients with metastasis were higher than those in patients without metastasis (P < 0.05). Conclusions: Our study concludes that there is a notable association between elevated serum levels of miR-21, HSP90a, and GASP-1 and lung cancer. However, it is crucial to acknowledge that these findings are preliminary and further statistical analysis is needed to strengthen these associations. Future studies with comprehensive statistical evaluation will be vital to validate these potential biomarkers for lung cancer diagnosis and prognosis.

10.
Heliyon ; 10(15): e35405, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170318

RESUMO

Objective: To explore the possible mechanisms by which follicle-stimulating hormone (FSH) regulates postmenopausal osteoporosis through the FSH/FSH receptor (FSHr)/G protein/C/EBPß/heat shock protein 90 alpha (HSP90α) signalling pathways. Methods: We measured serum FSH, luteinising hormone (LH), and HSP90α levels in the serum and adipose tissue of women of childbearing age and menopausal status. In the in vivo studies, 12 B57CL female mice were divided equally into Sham, OVX, and OVX + FSHr Blocker groups. Serum levels of alkaline phosphatase, FSH, and HSP90α, along with StRACP vitality, were determined, and femur micro-computed tomography was performed. Additionally, FSH, FSHr, G protein, C/EBPß, and HSP90α levels were assessed using quantitative polymerase chain reaction. Finally, we divided the human multiple myeloma cell line U266 into three groups. The activity of tartrate-resistant acid phosphatase (TRAP) in the supernatant at different stages was detected, and myeloma cells were stained with TRAP. Results: HSP90α levels in adipose tissue supernatant and serum were lower in women of childbearing age than in menopausal women (P < 0.05). Serum FSH and HSP90α levels demonstrated a strong correlation. Treatment with FSHr blockers resulted in decreased FSH, FSHr, G protein, C/EBPß, and HSP90α levels in mice. TRAP staining of osteoclast-like cells exhibited a significantly higher intensity in the M-CSF + RANKL + recombinant HSP90α group than in the M-CSF + RANKL and blank control groups (P < 0.05). Conclusions: Our results indicate that FSH promotes HSP90α secretion by adipocytes via the FSHr/G protein/C/EBPß pathway. This mechanism affects osteoclast activity and exacerbates osteoporosis.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39175432

RESUMO

Chemoresistance is the primary reason for poor prognosis in patients with pancreatic cancer (PC). Recent studies have indicated that ferroptosis may improve chemoresistance, but the underlying mechanisms remain unclear. In this study, significant upregulation of heat shock protein 90α (Hsp90α) expression is detected in the peripheral blood and tissue samples of patients with chemoresistant PC. Further studies reveal that Hsp90α promotes the proliferation, migration, and invasion of a chemoresistant pancreatic cell line (Panc-1-gem) by suppressing ferroptosis. Hsp90α competitively binds to Kelch-like ECH-associated protein 1 (Keap1), liberating nuclear factor erythroid 2-related factor 2 (Nrf2) from Keap1 sequestration. Nrf2 subsequently translocates into the nucleus and activates the glutathione peroxidase 4 (GPX4) pathway, thereby suppressing ferroptosis. This process further worsens the chemoresistance of PC cells. This study provides valuable insight into potential molecular targets to overcome chemoresistance in PC. It sheds light on the intricate mechanisms linking Hsp90α and ferroptosis to chemoresistance in PC and provides a theoretical foundation for the development of novel therapeutic strategies.

12.
Cancer ; 130(21): 3745-3756, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985885

RESUMO

BACKGROUND: Pimitespib (TAS-116), a first-in-class, oral, selective heat-shock protein 90 inhibitor, is approved as fourth-line treatment for gastrointestinal stromal tumors in Japan. This phase 1 study evaluated the cardiac safety of pimitespib. METHODS: In this open-label, nonrandomized, multicenter study, Japanese patients (aged ≥20 years) with refractory, advanced solid tumors received placebo on day -1, then pimitespib 160 mg daily on days 1-5 of the cardiac safety evaluation period. Electrocardiograms were conducted at baseline, and on days -2, -1, 1, and 5; and blood samples were collected on days 1 and 5. Patients then received once-daily pimitespib for 5 days every 3 weeks. The primary end point was the time-matched difference in QT interval corrected for heart rate using the Fridericia correction (QTcF) between pimitespib and placebo. Pharmacokinetics, safety, and preliminary efficacy were also assessed. RESULTS: Of the 22 patients in the cardiac safety-evaluable population, no clinically relevant QTc prolongation was observed; the upper bound of the one-sided 95% confidence interval for the time-matched difference in change from baseline in QTcF was <20 msec at all time points on days 1 and 5. Pimitespib pharmacokinetic parameters were consistent with previous data, and the time-matched difference in change from baseline in QTcF showed no marked increase as plasma concentrations increased. The safety profile was acceptable; 40% of patients experienced grade 3 or greater adverse drug reactions, mostly diarrhea (20%). The median progression-free survival was 3.1 months. CONCLUSIONS: In Japanese patients with refractory, advanced solid tumors, pimitespib was not associated with clinically relevant QTc prolongation, and there were no cardiovascular safety concerns. PLAIN LANGUAGE SUMMARY: Pimitespib is a new anticancer drug that is being used to treat cancer in the stomach or intestines (gastrointestinal stromal tumors). This study demonstrated that pimitespib had no marked effect on heart rhythm or negative effects on the heart or blood vessels and had promising anticancer effects in Japanese patients with advanced solid tumors who were unable to tolerate or benefit from standard treatment.


Assuntos
Neoplasias , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias/tratamento farmacológico , Adulto , Eletrocardiografia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Idoso de 80 Anos ou mais
13.
Anticancer Res ; 44(8): 3343-3348, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060043

RESUMO

BACKGROUND/AIM: Most clear cell renal cell carcinomas (ccRCCs) have a dysfunctional von Hippel-Lindau tumor suppressor protein (VHL). Hypoxia-inducible factors 1 and 2 alpha (HIF1α and HIF2α) accumulate in ccRCC with dysfunctional VHL and up-regulate the vascular endothelial growth factor (VEGF) pathway and tumor angiogenesis. Recently, pimitespib (PIM), a potent ATP-competitive inhibitor of heat shock protein 90 (HSP90), was developed. PIM down-regulates the expression of HIF, a key protein in ccRCC progression, with anti-angiogenic effects. This study aimed to examine the effectiveness of PIM in ccRCC and the underlying mechanisms. MATERIALS AND METHODS: The efficacy and mechanism of PIM against ccRCCs was evaluated using ccRCC cell lines. RESULTS: PIM inhibited the VEGFR pathway by down-regulating VEGFR 2, phosphorylated VEGFR 2, and protein levels in downstream signaling pathways. The growth of ccRCC cell lines was inhibited by PIM. Furthermore, PIM inhibits HIF1α, HIF2α, and VEGF expression, suggesting that PIM may suppress angiogenesis in addition to the VEGFR pathway. CONCLUSION: PIM provides a novel approach for treating ccRCC and holds promise for future clinical strategies. Further in vivo and clinical research is required to elucidate the detailed relationship between the effects of PIM and ccRCC.


Assuntos
Carcinoma de Células Renais , Proteínas de Choque Térmico HSP90 , Neoplasias Renais , Neovascularização Patológica , Transdução de Sinais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Neovascularização Patológica/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Triazóis
14.
Int J Cancer ; 155(11): 2094-2106, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985144

RESUMO

The precise delivery of drugs to tumor sites and the thermoresistance of tumors remain major challenges in photothermal therapy (PTT). Somatostatin receptor 2 (SSTR2) is proposed as an ideal target for the precise treatment of SCLC. We developed a targeting nano-drug delivery system comprising anti-SSTR2 monoclonal antibody (MAb) surface-modified nanoparticles co-encapsulating Cypate and gambogic acid (GA). The formed SGCPNs demonstrated excellent monodispersity, physiological stability, preferable biocompatibility, and resultant efficient photothermal conversion efficacy. SGCPNs were quickly internalized by SSTR2-overexpressing SCLC cells, triggering the release of GA under acidic and near-infrared (NIR) laser irradiation environments, leading to their escape from lysosomes to the cytosol and then diffusion into the nucleus. SGCPNs can not only decrease the cell survival rate but also inhibit the activity of heat shock protein 90 (HSP90). SGCPNs can be precisely delivered to xenograft tumors of SSTR2-positive SCLC in vivo. Upon NIR laser irradiation, therapy of SGCPNs showed significant tumor regression. In conclusion, SGCPNs provide a new chemo-photothermal synergistic treatment strategy for targeting SCLC.


Assuntos
Neoplasias Pulmonares , Terapia Fototérmica , Carcinoma de Pequenas Células do Pulmão , Xantonas , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Humanos , Animais , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Terapia Fototérmica/métodos , Xantonas/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de Somatostatina/metabolismo , Nanopartículas/química , Camundongos Nus , Anticorpos Monoclonais/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Terapia Combinada , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
15.
Eur J Med Chem ; 276: 116620, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971048

RESUMO

A series of indazole analogs, derived from the B,C-ring-truncated scaffold of deguelin, were designed to function as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antitumor agents against HER2-positive breast cancer. Among the synthesized compounds, compound 12d exhibited substantial inhibitory effects in trastuzumab-sensitive (BT474) and trastuzumab-resistant (JIMT-1) breast cancer cells, with IC50 values of 6.86 and 4.42 µM, respectively. Notably, compound 12d exhibited no cytotoxicity in normal cells. Compound 12d markedly downregulated the expression of the major HSP90 client proteins in both cell types, attributing its cytotoxicity to the destabilization and inactivation of HSP90 client proteins. Molecular docking studies using the homology model of an HSP90 homodimer demonstrated that inhibitor 12d fit nicely into the C-terminal domain, boasting a higher electrostatic complementary score than ATP. In vivo pharmacokinetic study indicated the high oral bioavailability of compound 12 d at F = 66.9 %, while toxicological studies indicated its negligible impact on hERG channels and CYP isozymes. Genotoxicity tests further confirmed its safety profile. The findings collectively position compound 12d as a promising candidate for further development as an antitumor agent against HER2-positive breast cancer.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90 , Indazóis , Simulação de Acoplamento Molecular , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Indazóis/farmacologia , Indazóis/química , Indazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Animais , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo
16.
J Therm Biol ; 122: 103881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38870755

RESUMO

Heat stress (HS) poses a substantial threat to animal growth and development, resulting in declining performance and economic losses. The intestinal system is susceptible to HS and undergoes intestinal hyperthermia and pathological hypoxia. Hypoxia-inducible factor-1α (HIF-1α), a key player in cellular hypoxic adaptation, is influenced by prolyl-4-hydroxylase 2 (PHD2) and heat shock protein 90 (HSP90). However, the comprehensive regulation of HIF-1α in the HS intestine remains unclear. This study aims to explore the impact of HS on pig intestinal mucosa and the regulatory mechanism of HIF-1α. Twenty-four Congjiang Xiang pigs were divided into the control and five HS-treated groups (6, 12, 24, 48, and 72 h). Ambient temperature and humidity were maintained in a thermally-neutral state (temperature-humidity index (THI) < 74) in the control group, whereas the HS group experienced moderate HS (78 < THI <84). Histological examination revealed villus exfoliation after 12 h of HS in the duodenum, jejunum, and ileum, with increasing damage as HS duration extended. The villus height to crypt depth ratio (V/C) decreased and goblet cell number increased with prolonged HS. Quantitative real-time PCR, Western blot, and immunohistochemistry analysis indicated increased expression of HIF-1α and HSP90 in the small intestine with prolonged HS, whereas PHD2 expression decreased. Further investigation in IPEC-J2 cells subjected to HS revealed that overexpressing PHD2 increased PHD2 mRNA and protein expression, while it decreases HIF-1α. Conversely, interfering with HSP90 expression substantially decreased both HSP90 and HIF-1α mRNA and protein levels. These results suggest that HS induces intestinal hypoxia with concomitant small intestinal mucosal damage. The expression of HIF-1α in HS-treated intestinal epithelial cells may be co-regulated by HSP90 and PHD2 and is possibly linked to intestinal hyperthermia and hypoxia.


Assuntos
Células Epiteliais , Proteínas de Choque Térmico HSP90 , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Intestino Delgado , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Suínos , Intestino Delgado/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Linhagem Celular
17.
J Biol Chem ; 300(6): 107342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705392

RESUMO

Posttranslational modifications of Hsp90 are known to regulate its in vivo chaperone functions. Here, we demonstrate that the lysine acetylation-deacetylation dynamics of Hsp82 is a major determinant in DNA repair mediated by Rad51. We uncover that the deacetylated lysine 27 in Hsp82 dictates the formation of the Hsp82-Aha1-Rad51 complex, which is crucial for client maturation. Intriguingly, Aha1-Rad51 complex formation is not dependent on Hsp82 or its acetylation status; implying that Aha1-Rad51 association precedes the interaction with Hsp82. The DNA damage sensitivity of Hsp82 (K27Q/K27R) mutants are epistatic to the loss of the (de)acetylase hda1Δ; reinforcing the importance of the reversible acetylation of Hsp82 at the K27 position. These findings underscore the significance of the cross talk between a specific Hsp82 chaperone modification code and the cognate cochaperones in a client-specific manner. Given the pivotal role that Rad51 plays during DNA repair in eukaryotes and particularly in cancer cells, targeting the Hda1-Hsp90 axis could be explored as a new therapeutic approach against cancer.


Assuntos
Reparo do DNA , Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Rad51 Recombinase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Acetilação , Dano ao DNA , Processamento de Proteína Pós-Traducional , Lisina/metabolismo
18.
Front Mol Biosci ; 11: 1405339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756532

RESUMO

Heat shock protein 90 (Hsp90) is a family of chaperone proteins that consists of four isoforms: Hsp90α, Hsp90ß, glucose-regulated protein 94 (Grp94), and tumor necrosis factor type 1 receptor-associated protein (TRAP1). They are involved in modulating the folding, maturation, and activation of their client proteins to regulate numerous intracellular signaling pathways. Previous studies demonstrated that pan-Hsp90 inhibitors reduce inflammatory signaling pathways resulting in a reduction of inflammation and pain but show toxicities in cancer-related clinical trials. Further, the role of Hsp90 isoforms in inflammation remains poorly understood. This study aimed to determine anti-inflammatory activities of Hsp90 isoforms selective inhibitors on the lipopolysaccharide (LPS)-induced inflammation in BV-2 cells, a murine microglial cell line. The production of inflammatory mediators such as nitric oxide (NO), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α) was measured. We also investigated the impact of Hsp90 isoform inhibitors on the activation of nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinases (MAPKs). We found that selective inhibitors of Hsp90ß reduced the LPS-induced production of NO, IL-1ß, and TNF-α via diminishing the activation of NF-κB and Extracellular signal-regulated kinases (ERK) MAPK. The Hsp90α, Grp94, TRAP1 inhibitors had limited effect on the production of inflammatory mediators. These findings suggest that Hsp90ß is the key player in LPS-induced neuroinflammation. Thereby providing a more selective drug target for development of medications involved in pain management that can potentially contribute to the reduction of adverse side effects associated with Hsp90 pan inhibitors.

19.
Discov Oncol ; 15(1): 151, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727789

RESUMO

Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.

20.
Nucl Med Biol ; 136-137: 108929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38796925

RESUMO

Heat shock protein 90 (HSP90) plays a crucial role in cancer cell growth and metastasis by stabilizing overexpressed signaling proteins. Inhibiting HSP90 has emerged as a promising anti-cancer strategy. In this study, we aimed to develop and characterize a HSP90-targeted molecular imaging probe, [64Cu]Cu-DOTA-BDA-GM, based on a specific HSP90 inhibitor, geldanamycin (GM), for PET imaging of cancers. GM is modified at the C-17 position with 1,4-butane-diamine (BDA) and linked to 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for 64Cu radiolabeling. We evaluated the probe's specific binding to HSP90-expressing cells using Chinese hamster ovary (CHO) cells and breast cancer cells including MDA-MB-231, MDA-MB-435S, MCF7, and KR-BR-3 cell lines. A competition study with non-radioactive GM-BDA yielded an IC50 value of 1.35 ± 0.14 nM, underscoring the probe's affinity for HSP90. In xenograft models of MDA-MB-231 breast cancer, [64Cu]Cu-DOTA-BDA-GM showcased targeted tumor localization, with significant radioactivity observed up to 18 h post-injection. Blocking studies using unlabeled GM-BDA and treatment with the anticancer drug Vorinostat (SAHA), which can affect the expression and activity of numerous proteins, such as HSPs, confirmed the specificity and sensitivity of the probe in cancer targeting. Additionally, PET/CT imaging in a lung metastasis mouse model revealed increased lung uptake of [64Cu]Cu-DOTA-BDA-GM in metastatic sites, significantly higher than in non-metastatic lungs, illustrating the probe's ability to detect metastatic breast cancer. In conclusion, [64Cu]Cu-DOTA-BDA-GM represents a sensitive and specific approach for identifying HSP90 expression in breast cancer and metastases, offering promising implications for clinical diagnosis and monitoring.


Assuntos
Benzoquinonas , Neoplasias da Mama , Radioisótopos de Cobre , Proteínas de Choque Térmico HSP90 , Lactamas Macrocíclicas , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Lactamas Macrocíclicas/síntese química , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacologia , Humanos , Camundongos , Feminino , Benzoquinonas/química , Marcação por Isótopo , Linhagem Celular Tumoral , Distribuição Tecidual , Técnicas de Química Sintética , Regulação Neoplásica da Expressão Gênica , Radioquímica , Tomografia por Emissão de Pósitrons/métodos , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA