Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 29(1): 871-881, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35277099

RESUMO

Skin photoaging is premature skin aging damage that occurs after repeated exposure to ultraviolet (UV) radiation. Although isothiocyanates extracted from the moringa tree (Moringa oleifera Lam.) (MITC) exhibit excellent effects against skin photoaging, its application is restricted because of its characteristics, such as extremely low water solubility, bioavailability, and easy degradation. Currently, flexible nanoliposomes have gained increasing interest as a biocompatible polymer for applications such as transdermal drug delivery. We prepare amphiphilic hyaluronic acid (HA) conjugated with ceramide (CE) to modify nanoliposomes for MITC (HACE/MITC NPs) delivery. The HACE/MITC nanoparticles (NPs) are prepared and characterized for entrapment efficiency, particle size, polydispersity index, zeta potential, in vitro release, in vivo skin permeation, and in vitro protective effect of photoaging. The zeta potential of MITC NPs and HACE/MITC NPs is -24.46 mV and -24.93 mV, respectively. After modification of HACE, the entrapment efficient of MITC liposome increased from 62.54% to 70.67%, and the particle size decreased from 266.1 nm to 192.8 nm. In vivo skin permeation, permeated drug increased from 49.42 to 71.40%. Moreover, the results showed that the entrapment of MITC in nanoliposomes improves its stability, efficacy, and skin permeation. Further, HACE/MITC NPs are favorable for uptake by HaCaT cells without requiring changes in cell morphology, which significantly improves the activities of antioxidant enzymes, scavenges UVB-induced reactive oxygen species, protects skin from damage, and reduces MMP-1, MMP-3, and MMP-9 expression caused by radiation-induced photoaging. Our results strongly suggest that flexible nanoliposomes successfully improved the cell membrane permeation of MITC, and that anti-photoaging and HACE/MITC NPs can potentially be used as candidates for photoaging therapy.


Assuntos
Moringa oleifera , Nanopartículas , Células HaCaT , Humanos , Isotiocianatos/farmacologia , Tamanho da Partícula
2.
ACS Appl Mater Interfaces ; 9(27): 22308-22320, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621523

RESUMO

An amphiphilic hyaluronic acid-ceramide-dopamine (HACE-d) conjugate was prepared, and HACE-d-based nanoparticles (NPs) including phloretin (as an inhibitor of glucose transporter (GLUT1)) were fabricated. Mussel-inspired property of d was introduced to HACE NPs, and it may improve tumor targetability and penetration in addition to passive (based on enhanced permeability and retention effect) and active (interaction between HA and CD44 receptor) tumor targeting effects. HACE-d/phloretin NPs with 279 nm mean diameter, ∼0.2 polydispersity index, and -18 mV zeta potential were successfully fabricated, and a sustained drug release pattern was observed. HACE-d/phloretin NPs exhibited enhanced cellular accumulation efficiency and antiproliferation property, compared with HACE/phloretin NPs, in MDA-MB-231 cells (GLUT1 and CD44 receptor-expressed human breast adenocarcinoma cells). In a MDA-MB-231 spheroid model, HACE-d NPs group showed better tumor penetration efficiency and spheroid growth inhibitory effect rather than HACE NPs group. According to the optical imaging test in MDA-MB-231 tumor-xenografted mouse, HACE-d NPs group exhibited more selective distribution in tumor region and deeper infiltration into the inner part of tumor compared with HACE NPs group. After intravenous injection, HACE-d/phloretin NPs group also exhibited improved antitumor efficacies rather than the other experimental groups in MDA-MB-231 tumor-xenografted mouse. All these findings suggested that HACE-d/phloretin NP may be a promising tumor targetable and penetrable nanosystem for the therapy and imaging of GLUT1 and CD44 receptor-expressed cancers.


Assuntos
Nanoestruturas , Animais , Antineoplásicos , Bivalves , Linhagem Celular Tumoral , Humanos , Ácido Hialurônico , Camundongos , Nanopartículas
3.
Acta Biomater ; 53: 414-426, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216300

RESUMO

(3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface of HACE-AMPB/MB NPs (in the aqueous milieu) may react with the sialic acid over-expressed in cancer cells and intramolecular B‒O bond can be formed. This phenylboronic acid-sialic acid interaction may provide additional tumor targeting and penetration potentials together with an enhanced permeability and retention (EPR) effect (passive tumor targeting) and HA-CD44 receptor interaction (active tumor targeting). Developed HACE-AMPB NP may be one of promising nanocarriers for the imaging and therapy of CD44 receptor-expressed cancers.


Assuntos
Ácidos Borônicos/química , Ácido Hialurônico/química , Nanocápsulas/química , Neoplasias Experimentais/química , Linhagem Celular Tumoral , Ceramidas/química , Reagentes de Ligações Cruzadas/química , Difusão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanocápsulas/ultraestrutura , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Neoplasias Experimentais/patologia , Tamanho da Partícula
4.
J Control Release ; 236: 38-46, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320169

RESUMO

Dual CD44 and folate receptor targetable nanoparticles (NPs) based on hyaluronic acid-ceramide-folic acid (HACE-FA) were fabricated for improving tumor targetability. HACE-FA was synthesized via esterification between the carboxylic group of FA and hydroxyl group of HA. Doxorubicin (DOX)-loaded HACE-FA NPs, with a mean diameter of 120-130nm, narrow size distribution, and negative zeta potential, were prepared. The drug release from HACE-FA NPs were significantly increased in acidic pH (pH5.5) compared with physiological pH (7.4) (p<0.05). The cellular accumulation of the drug in HACE-FA NPs group was higher than that of HACE NPs group in SKOV-3 cells (human ovarian cancer cells; CD44 and folate receptor (FR)-positive cells). Dual targetability of HACE-FA NPs, compared to HACE NPs, was also verified in the SKOV-3 tumor-xenografted mouse model by near-infrared fluorescence (NIRF) imaging. Twenty-four hours after injection, HACE-FA NPs were accumulated mainly in tumor regions and their fluorescence intensity was 4.82-fold higher than that of HACE NPs (p<0.05). These findings suggest successful application of HACE-FA NPs for the accurate delivery of anticancer drugs to ovarian cancer.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Receptores de Folato com Âncoras de GPI/metabolismo , Receptores de Hialuronatos/metabolismo , Nanopartículas/química , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Ceramidas/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Ácido Fólico/química , Humanos , Ácido Hialurônico/química , Camundongos , Terapia de Alvo Molecular , Imagem Óptica , Tamanho da Partícula
5.
J Photochem Photobiol B ; 158: 113-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26967521

RESUMO

To increase the therapeutic efficacy of photodynamic therapy (PDT) in treating lung cancer, we developed both photosensitizer and anticancer drug encapsulated hyaluronic acid-ceramide nanoparticles. Based on our previous study, a co-delivery system of photosensitizers and anticancer agents greatly improves the therapeutic effect of PDT. Furthermore, hyaluronic acid-ceramide-based nanoparticles are ideal targeting carriers for lung cancer. In vitro phototoxicity in A549 (human lung adenocarcinoma) cells and in vivo antitumor efficacy in A549 tumor-bearing mice treated with hypocrellin B (HB)-loaded nanoparticles (HB-NPs) or hypocrellin B and paclitaxel loaded nanoparticles (HB-P-NPs) were evaluated. Cell viability assay, microscopic analysis and FACS analysis were performed for the in vitro studies and HB-P-NPs showed enhanced phototoxicity compared with HB-NPs. In the animal study, the tumor volume change and the histological analysis was studied and the anticancer efficacy improved in the order of free HB

Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Ceramidas/química , Ácido Hialurônico/química , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/administração & dosagem , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas/administração & dosagem , Animais , Xenoenxertos , Camundongos , Perileno/administração & dosagem
6.
J Pharm Sci ; 103(10): 3254-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25112537

RESUMO

Hybrid nanocomplex formulations, based on amphiphilic hyaluronic acid-ceramide (HACE) and lipids, were fabricated for the delivery of 20(S)-ginsenoside Rg 3 [(S)-Rg3]. Nanocomplexes with less than 200 nm mean diameter, narrow size distribution, spherical shape, and negative zeta potential were prepared. The maintenance of the structural stability of the hybrid nanocomplexes in the blood stream was demonstrated by measuring their particle size in serum. Nanocomplexes based on HACE, phosphatidylcholine (PC), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) showed a sustained drug release profile compared with other formulations. Blank nanocomplexes exhibited negligible cytotoxicity within the tested concentration range in A549 human lung adenocarcinoma cells. The cellular uptake efficiency of hybrid nanocomplexes was improved compared with the HACE-based nanoparticles probably because of interactions between lipids and the cellular membrane. The results of a pharmacokinetic study in rats revealed decreased in vivo clearance of (S)-Rg3, especially in the HACE/PC/DSPE-PEG-based hybrid nanocomplex (F3) group. The hybrid nanostructure and the outer PEG chain likely contributed to improve in vivo performance of the F3 group. Thus, these developed hybrid nanocomplexes could serve as good candidates for tumor-targeted delivery of anticancer agents.


Assuntos
Ginsenosídeos/administração & dosagem , Ácido Hialurônico/química , Lipídeos/química , Polietilenoglicóis/química , Animais , Linhagem Celular , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
7.
Int J Pharm ; 473(1-2): 426-33, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079433

RESUMO

A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system.


Assuntos
Ceramidas/química , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Ácido Láctico/química , Nanoestruturas/química , Ácido Poliglicólico/química , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Nanoestruturas/administração & dosagem , Neoplasias/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Colloids Surf B Biointerfaces ; 121: 380-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24993066

RESUMO

Doxorubicin (DOX)-loaded nanoparticles (NPs) based on interconnected hyaluronic acid-ceramide (HACE) structure were fabricated and their anti-tumor efficacy was evaluated in vitro. Interconnected HACE was synthesized by cross-linking HACE with adipic acid dihydrazide (ADH) and its synthesis was identified by (1)H NMR analysis. DOX-loaded NPs with <200nm mean diameter, negative zeta potential, and spherical shape were prepared. Interconnected HACE-based NPs increased drug-loading capacity and in vitro drug release, compared to HACE-based NPs. DOX release was dependent on the environmental pH, implying the feasibility of enhancing drug release in tumor region and endosomal compartments. Synthesized interconnected HACE did not show cytotoxic effect up to 1000µg/ml concentration in NIH3T3 and MDA-MB-231 cells. In cellular uptake studies using confocal laser scanning microscopy (CLSM) and flow cytometry in MDA-MB-231 cells, higher uptake of DOX was observed in the interconnected HACE-based NPs than HACE NPs. In vitro anti-tumor efficacy was assessed by MTS-based assay, in which cytotoxic effect of DOX-loaded interconnected HACE NPs was higher than that of DOX-loaded HACE NPs. Thus, these results suggest the feasibility of interconnected HACE-based NPs to be used for efficient tumor-targeted delivery of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Nanopartículas/química , Adipatos/síntese química , Adipatos/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Humanos , Ácido Hialurônico/síntese química , Camundongos , Células NIH 3T3 , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Espectroscopia de Prótons por Ressonância Magnética
9.
J Control Release ; 174: 98-108, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24280260

RESUMO

Nanohybrid liposomes coated with amphiphilic hyaluronic acid-ceramide (HACE) was fabricated for targeted delivery of anticancer drug and in vivo cancer imaging. Nanohybrid liposomes including doxorubicin (DOX) and Magnevist, a contrast agent for magnetic resonance (MR) imaging, with 120-130nm mean diameter and a narrow size distribution were developed. DOX release from the developed formulation was improved at acidic pH (pH5.5 and 6.8) versus physiological pH (pH7.4). Cytotoxicity induced by the blank plain liposome was reduced by coating the outer surface of the nanohybrid liposome with HACE. Cellular uptake of DOX from the nanohybrid liposome was enhanced by HA and CD44 receptor interaction, versus the plain liposome. In vivo contrast-enhancing effects revealed that the nanohybrid liposome can be used as a tumor targeting MR imaging probe for cancer diagnosis. In a pharmacokinetic study in rats, in vivo clearance of DOX was decreased in the order DOX solution, plain liposome (F2), and nanohybrid liposome (F3), indicating prolonged circulation of the drug in the blood stream and improved therapeutic efficacy of the nanohybrid liposome (F3). Based on these findings, the nanohybrid liposomal system may be a useful candidate for real-time cancer diagnosis and therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Meios de Contraste/administração & dosagem , Doxorrubicina/administração & dosagem , Gadolínio DTPA/administração & dosagem , Ácido Hialurônico/química , Nanopartículas/administração & dosagem , Animais , Antibióticos Antineoplásicos/sangue , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Meios de Contraste/química , Doxorrubicina/sangue , Doxorrubicina/química , Doxorrubicina/farmacocinética , Feminino , Gadolínio DTPA/química , Humanos , Lipossomos , Masculino , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA