RESUMO
The World Health Organization recognizes frailty and multimorbidity as major global health issues and underscores the need for effective interventions. Recent advances have identified interleukin-11 (IL-11), a pro-inflammatory cytokine, as a key player in modulating aging pathways (such as ERK, AMPK, mTOR and JAK-STAT3). Studies have shown that IL-11 inhibition can lead to improved health span and lifespan in animal models, with potential applications in humans. By targeting IL-11, researchers aim to mitigate age-related diseases, such as cancer, fibrosis, and multimorbidity, which pose significant healthcare challenges worldwide. IL-11 inhibition offers a promising strategy, with preclinical trials demonstrating its ability to regenerate renal cells, reduce hepatocyte death, and mitigate liver fibrosis. Further research is necessary to fully elucidate the mechanisms of IL-11 inhibition and its therapeutic potential. If successful, this approach could lead to the development of novel pharmacological interventions, promoting healthier aging and increasing human lifespan.
RESUMO
Interleukin 11 (IL-11), a member of the IL-6 family of cytokines, has roles in haematopoiesis, inflammation, bone metabolism, and craniofacial development. IL-11 also has pathological roles in chronic inflammatory diseases, fibrosis, and cancer. In this structural snapshot, we explore our recently published cryo-EM structure of the human IL-11 signalling complex to understand the molecular mechanisms of complex formation and disease-associated mutations. IL-11 signals by binding to its cell surface receptors, the IL-11 receptor α subunit (IL-11Rα) and glycoprotein 130 (gp130), to form a hexameric signalling complex. We examine the locations within the complex of receptor sequence variants that are associated with craniosynostosis and craniosynostosis-like phenotypes and speculate on potential molecular mechanisms leading to defects in signalling function. While these causative amino acid sequence changes in IL-11Rα are generally distal to interfaces between components of the complex, important structural residues are highly represented, including proline residues, cysteine residues involved in disulfide bonds, and residues within or surrounding the tryptophan-arginine ladder. We also note the locations and potential effects of amino acid substitutions within the extracellular domains of gp130 that are associated with craniosynostosis. As focus on the physiological and pathological functions of IL-11 grows, the importance of high-resolution structural knowledge of IL-11 signalling to understand disease-associated mutations and to inform therapeutic strategies will only increase.
RESUMO
Osteosarcoma (OS) is a lethal malignant orthotopic bone tumor that primarily affects children and adolescents. Biomimetic nanocarriers have attracted wide attention as a new strategy for delivering chemotherapy agents to the OS. However, challenges such as rapid clearance and limited targeting hinder the effectiveness of OS chemotherapy. In this study, we designed reactive oxygen species (ROS)-responsive nanoparticles (NPs) coated with an interleukin (IL)11-engineered macrophage membrane (MM). The camouflage by MMs prevents clearance of IL-11-engineered MM-coated NPs loaded with doxorubicin (IL-11/MM@NPs/Dox) by the immune system. Moreover, the macrophage membrane combined with surface-expressed IL-11 not only directed IL-11/MM@NPs/Dox to OS tissues but also selectively identified IL-11 receptor alpha (IL-11Rα)-enriched OS cells. Within these cells, elevated levels of ROS triggered the controlled release of Dox from the ROS-responsive NPs. The synergistic modification of targeted ligand conjugation and cell membrane coating on the ROS-responsive NPs enhanced drug availability and reduced toxic side effects, thereby boosting the efficacy of OS chemotherapy. In summary, our findings suggest that IL-11/MM@NPs/Dox represents a promising approach to improving OS chemotherapy efficacy while ensuring excellent biocompatibility.
RESUMO
BACKGROUND: Lung adenocarcinoma (LUAD) is still one of the most prevalent malignancies. Interleukin factors are closely associated with the initiation and progression of cancer. However, the relationship between interleukin factors and LUAD has not been fully elucidated. This study aimed to use Mendelian randomization (MR) and RNA sequencing (RNA-seq) analyses to identify the interleukin factors associated with the onset and progression of LUAD. METHODS: Exposure-related instrumental variables were selected from interleukin factor summary datasets. The LUAD summary dataset from FINGENE served as the outcome. MR and sensitivity analyses were conducted to screen for interleukin factors associated with LUAD occurrence. Transcriptome analyses revealed the role of interleukin factors in lung tissues. The results were validated through Western blotting and further confirmed with driver gene-negative patients from multiple centers. Potential mechanisms influencing LUAD occurrence and development were explored using bulk RNA-seq and single-cell RNA-seq data. RESULTS: MR analysis indicated that elevated plasma levels of IL6RB, IL27RA, IL22RA1, and IL16 are causally associated with increased LUAD risk, while IL18R1 and IL11RA exhibit the opposite effect. Transcriptome analyses revealed that IL11RA, IL18R1, and IL16 were downregulated in tumor tissues compared with normal lung tissue, but only higher expression of IL11RA correlated with improved prognosis in patients with LUAD from different centers and persisted even in driver-gene negative patients. The IL11RA protein level was lower in various LUAD cell lines than in human bronchial epithelial cells. The genes co-expressed with IL11RA were enriched in the Ras signaling pathway and glycosylation processes. Fibroblasts were the primary IL11RA-expressing cell population, with IL11RA+fibroblasts exhibiting a more immature state. The genes differentially expressed between IL11RA+and IL11RA- fibroblasts were involved in the PI3K-Akt/TNF signaling pathway. CONCLUSION: According to the MR and transcriptome analyses, the downregulation of IL11RA was closely related to the occurrence and development of LUAD.
RESUMO
BACKGROUND: Bronchopulmonary dysplasia (BPD) is a chronic lung disorder predominantly affecting preterm infants. Oxygen therapy, a common treatment for BPD, often leads to hyperoxia-induced pulmonary damage, particularly targeting alveolar epithelial cells (AECs). Crucially, disrupted lung epithelium-fibroblast interactions significantly contribute to BPD's pathogenesis. Previous studies on interleukin-11 (IL-11) in lung diseases have yielded conflicting results. Recent research, however, highlights IL-11 as a key regulator of fibrosis, stromal inflammation, and epithelial dysfunction. Despite this, the specific role of IL-11 in BPD remains underexplored. Our transcriptome analysis of normal and hyperoxia-exposed murine lung tissues revealed an increased expression of IL-11 RNA. This study aimed to investigate IL-11's role in modulating the disrupted interactions between AECs and fibroblasts in BPD. METHODS: BPD was modeled in vivo by exposing C57BL/6J neonatal mice to hyperoxia. Histopathological changes in lung tissue were evaluated with hematoxylin-eosin staining, while lung fibrosis was assessed using Masson staining and immunohistochemistry (IHC). To investigate IL-11's role in pulmonary injury contributing to BPD, IL-11 levels were reduced through intraperitoneal administration of IL-11RαFc in hyperoxia-exposed mice. Additionally, MLE-12 cells subjected to 95% oxygen were collected and co-cultured with mouse pulmonary fibroblasts (MPFs) to measure α-SMA and Collagen I expression levels. IL-11 levels in the supernatants were quantified using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Both IHC and Masson staining revealed that inhibiting IL-11 expression alleviated pulmonary fibrosis in neonatal mice induced by hyperoxia, along with reducing the expression of fibrosis markers α-SMA and collagen I in lung tissue. In vitro analysis showed a significant increase in IL-11 levels in the supernatant of MLE-12 cells treated with hyperoxia. Silencing IL-11 expression in MLE-12 cells reduced α-SMA and collagen I concentrations in MPFs co-cultured with the supernatant of hyperoxia-treated MLE-12 cells. Additionally, ERK inhibitors decreased α-SMA and collagen I levels in MPFs co-cultured with the supernatant of hyperoxia-treated MLE-12 cells. Clinical studies found increased IL-11 levels in tracheal aspirates (TA) of infants with BPD. CONCLUSION: This research reveals that hyperoxia induces IL-11 secretion in lung epithelium. Additionally, IL-11 derived from lung epithelium emerged as a crucial mediator in myofibroblast differentiation via the ERK signaling pathway, highlighting its potential therapeutic value in BPD treatment.
RESUMO
Current methods for delivering genes to target tumors face significant challenges, including off-target effects and immune responses against delivery vectors. In this study, we developed a novel approach using messenger RNA (mRNA) to encode IL11RA for local immunotherapy, aiming to harness the immune system to combat tumors. Our research uncovered a compelling correlation between IL11RA expression and CD8 + T cell levels across multiple tumor types, with elevated IL11RA expression correlating with improved overall survival. Examination of the Pan-Cancer Atlas dataset showed a significant reduction in IL11RA expression in various cancer types compared to normal tissue, raising questions about its potential role in tumorigenesis. To achieve efficient in vivo expression of IL11RA, we synthesized two mRNA sequences mimicking the wild-type protein. These mRNA sequences were formulated and capped to ensure effective delivery, resulting in robust expression within tumor sites. Our investigation into IL11RA mRNA therapy demonstrated its effectiveness in controlling tumor growth when administered both intratumorally and intravenously in mouse models. Additionally, IL11RA mRNA treatment significantly stimulated the expansion of CD8 + T cells within tumors, draining lymph nodes, and the spleen. Transcriptome analysis revealed distinct transcriptional patterns associated with T cell functions. Using multiple deconvolution algorithms, we found substantial infiltration of CD8 + T cells following IL11RA mRNA treatment, highlighting its immunomodulatory effects within the tumor microenvironment. In conclusion, IL11RA mRNA therapy presents a promising strategy for tumor regression with potential immunomodulatory effects and clinical implications for improved survival outcomes.
Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , RNA Mensageiro , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Feminino , Subunidade alfa de Receptor de Interleucina-11/genética , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão GênicaRESUMO
Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.
Assuntos
Proliferação de Células , Células Endoteliais , Indóis , Interleucina-11 , Miócitos de Músculo Liso , Artéria Pulmonar , Piridonas , Fator de Transcrição STAT3 , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/citologia , Interleucina-11/metabolismo , Indóis/farmacologia , Animais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Piridonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Humanos , Masculino , Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Remodelação Vascular/efeitos dos fármacosRESUMO
BACKGROUND: Docetaxel resistance represents a significant obstacle in the treatment of prostate cancer. The intricate interplay between cytokine signalling pathways and transcriptional control mechanisms in cancer cells contributes to chemotherapeutic resistance, yet the underlying molecular determinants remain only partially understood. This study elucidated a novel resistance mechanism mediated by the autocrine interaction of interleukin-11 (IL-11) and its receptor interleukin-11 receptor subunit alpha(IL-11RA), culminating in activation of the JAK1/STAT4 signalling axis and subsequent transcriptional upregulation of the oncogene c-MYC. METHODS: Single-cell secretion profiling of prostate cancer organoid was analyzed to determine cytokine production profiles associated with docetaxel resistance.Analysis of the expression pattern of downstream receptor IL-11RA and enrichment of signal pathway to clarify the potential autocrine mechanism of IL-11.Next, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) was performed to detect the nuclear localization and DNA-binding patterns of phosphorylated STAT4 (pSTAT4). Coimmunoprecipitation and reporter assays were utilized to assess interaction between pSTAT4 and the cotranscription factor CREB-binding protein (CBP) as well as their role in c-MYC transcriptional activity. RESULTS: Autocrine secretion of IL-11 was markedly increased in docetaxel-resistant prostate cancer cells. IL-11 stimulation resulted in robust activation of JAK1/STAT4 signalling. Upon activation, pSTAT4 translocated to the nucleus and associated with CBP at the c-MYC promoter region, amplifying its transcriptional activity. Inhibition of the IL-11/IL-11RA interaction or disruption of the JAK1/STAT4 pathway significantly reduced pSTAT4 nuclear entry and its binding to CBP, leading to downregulation of c-MYC expression and restoration of docetaxel sensitivity. CONCLUSION: Our findings identify an autocrine loop of IL-11/IL-11RA that confers docetaxel resistance through the JAK1/STAT4 pathway. The pSTAT4-CBP interaction serves as a critical enhancer of c-MYC transcriptional activity in prostate cancer cells. Targeting this signalling axis presents a potential therapeutic strategy to overcome docetaxel resistance in advanced prostate cancer.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Interleucina-11 , Neoplasias da Próstata , Humanos , Masculino , Docetaxel/farmacologia , Regulação da Expressão Gênica , Interleucina-11/genética , Interleucina-11/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Fator de Transcrição STAT4/metabolismo , Resistencia a Medicamentos Antineoplásicos/genéticaRESUMO
IL6 is a proinflammatory cytokine that binds to membrane-bound IL6 receptor (IL6R) or soluble IL6R to signal via gp130 in cis or trans, respectively. We tested the hypothesis that sgp130Fc, which is believed to be a selective IL6 trans-signalling inhibitor, is in fact a non-specific inhibitor of gp130 signalling. In human cancer and primary cells, sgp130Fc inhibited IL6, IL11, OSM and CT1 cis-signalling. The IC50 values of sgp130Fc for IL6 and OSM cis-signalling were markedly (20- to 200-fold) lower than the concentrations of sgp130Fc used in mouse studies and clinical trials. sgp130 inhibited IL6 and OSM signalling in the presence of an ADAM10/17 inhibitor and the absence of soluble IL6R or OSMR, with effects that were indistinguishable from those of a gp130 neutralising antibody. These data show that sgp130Fc does not exclusively block IL6 trans-signalling and reveal instead that broad inhibition of gp130 signalling likely underlies its therapeutic effects. This proposes global or modular inhibition of gp130 as a therapeutic approach for treating human disease.
Assuntos
Citocinas , Interleucina-6 , Camundongos , Humanos , Animais , Citocinas/farmacologia , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Receptores de Interleucina-6RESUMO
Background: The objective is to create an IRGPI (Immune-related genes prognostic index), which could predict the survival and effectiveness of immune checkpoint inhibitor (ICI) treatment for lung adenocarcinoma (LUAD). Methods: By applying weighted gene co-expression network analysis (WGCNA), we ascertained 13 genes associated with immune functions. An IRGPI was constructed using four genes through multicox regression, and its validity was assessed in the GEO dataset. Next, we explored the immunological and molecular attributes and advantages of ICI treatment in subcategories delineated by IRGPI. The model genes were also validated by the random forest tree, and functional experiments were conducted to validate it. Results: The IRGPI relied on the genes CD79A, IL11, CTLA-4, and CD27. Individuals categorized as low-risk exhibited significantly improved overall survival in comparison to those classified as high-risk. Extensive findings indicated that the low-risk category exhibited associations with immune pathways, significant infiltration of CD8 T cells, M1 macrophages, and CD4 T cells, a reduced rate of gene mutations, and improved sensitivity to ICI therapy. Conversely, the higher-risk group displayed metabolic signals, elevated frequencies of TP53, KRAS, and KEAP1 mutations, escalated levels of NK cells, M0, and M2 macrophage infiltration, and a diminished response to ICI therapy. Additionally, our study unveiled that the downregulation of IL11 effectively impedes the proliferation and migration of lung carcinoma cells, while also inducing cell cycle arrest. Conclusion: IRGPI is a biomarker with significant potential for predicting the effectiveness of ICI treatment in LUAD patients and is closely related to the microenvironment and clinicopathological characteristics.
RESUMO
The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.
RESUMO
Macrophage filopodia, which are dynamic nanotube-like protrusions, have mainly been studied in the context of pathogen clearance. The mechanisms by which they facilitate intercellular communication and mediate tissue inflammation remain poorly understood. Here, we show that macrophage filopodia produce a unique membrane structure called "filopodial tip vesicle" (FTV) that originate from the tip of macrophages filopodia. Filopodia tip-derived particles contain numerous internal-vesicles and function as cargo storage depots via nanotubular transport. Functional studies indicate that the shedding of FTV from filopodia tip allows the delivery of many molecular signalling molecules to fibroblasts. We observed that FTV derived from M1 macrophages and high glucose (HG)-stimulated macrophages (HG/M1-ftv) exhibit an enrichment of the chemokine IL11, which is critical for fibroblast transdifferentiation. HG/M1-ftv induce renal interstitial fibrosis in diabetic mice, while FTV inhibition or targeting FTV IL11- alleviates renal interstitial fibrosis, suggesting that the HG/M1-ftvIL11 pathway may be a novel mechanism underlying renal fibrosis in diabetic nephropathy. Collectively, FTV release could represent a novel function by which filopodia contribute to cell biological processes, and FTV is potentially associated with macrophage filopodia-related fibrotic diseases. Video Abstract.
Assuntos
Diabetes Mellitus Experimental , Pseudópodes , Camundongos , Animais , Pseudópodes/metabolismo , Interleucina-11/metabolismo , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , FibroseRESUMO
Damaged cells that appear as a consequence of invasive dental procedures or in response to dental materials are supposed to release damage-associated signals. These damage-associated signals not only support tissue regeneration but might also contribute to unwanted fibrosis. The aim of this study was to identify a molecular target that reflects how fibroblasts respond to necrotic oral tissue cells. To simulate the cell damage, we prepared necrotic cell lysates by sonication of the osteocytic cell line IDG-SW3 and exposed them to gingival fibroblasts. RNAseq revealed a moderate increase in IL11 expression in the gingival fibroblasts, a pleiotropic cytokine involved in fibrosis and inflammation, and also in regeneration following trauma. Necrotic lysates of the human squamous carcinoma cell lines HSC2 and TR146, as well as of gingival fibroblasts, however, caused a robust increase in IL11 expression in the gingival fibroblasts. Consistently, immunoassay revealed significantly increased IL11 levels in the gingival fibroblasts when exposed to the respective lysates. Considering that IL11 is a TGF-ß target gene, IL11 expression was partially blocked by SB431542, a TGF-ß receptor type I kinase inhibitor. Moreover, lysates from the HSC2, TR146, and gingival fibroblasts caused a moderate smad2/3 nuclear translocation in the gingival fibroblasts. Taken together and based on IL11 expression, our findings show that fibroblasts are sensitive to damaged oral tissue cells.
RESUMO
Interleukin-11 (IL-11) is a versatile cytokine that modulates cellular differentiation and proliferation in various cell types and tissues. In this study, IL-11 gene from goldfish (Carassius auratus L.) has been identified and characterized. Goldfish IL-11 (gfIL-11) has an open reading frame (ORF) that spans 591 base pairs (bp). The ORF encodes a precursor protein consisting of 196 amino acids (aa), which includes a 26 aa signal peptide and a conserved domain belonging to the IL-11 superfamily. Based on phylogenetic analysis, gfIL-11 was found to be closely related to other IL-11 homologues identified in various fish species. The gfIL-11 transcript exhibited varied expression levels across all the analyzed tissues, with the highest expression observed in the gill and spleen. Treatment of goldfish head kidney leukocytes (HKLs) with LPS and live Aeromonas hydrophila, increased gfIL-11 mRNA expression level. Recombinant gfIL-11 protein (rgIL-11) induced a dose-dependent production of TNF-α and IFNγ from goldfish HKLs. Furthermore, the administration of rgIL-11 to goldfish HKLs triggered an increase in the expression of various transcription factors such as MafB, cJun, GATA2, and Egr1, which play a vital role in the differentiation of myeloid precursors into macrophages and monocytes. Our findings provide evidence that IL-11 is a crucial cytokine that promotes cell proliferation, immune response, and differentiation across various hematopoietic lineages and stages of goldfish.
RESUMO
Lutein is a strong antioxidant with anti-inflammatory, anti-oxidative and cardioprotective effects and could be a promising candidate for the treatment of hypertensive heart disease (HHD), but is not clinically appealing because of its low oral bioavailability and main distribution in the eyes. To address this, a biomimetic drug delivery system-MMLNPs was established by coating macrophage membranes (MMs) onto lutein-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (LNPs). This study characterized the physical properties of biomimetic nanoparticles and examined the targeting capability, therapeutic effects and mechanism, and biosecurity of administering them for cardiac fibrosis therapy in the transverse aortic constriction (TAC) model and in vitro. Transmission electron microscope mapping and dynamic light scattering analysis proved that MMLNPs were spherical nanoparticles camouflaged by a layer of cell membrane and had negative zeta potential. Confocal laser scanning microscopy and flow cytometry analysis showed that MMs on the biomimetic nanoparticles hindered the phagocytosis of macrophages and facilitated the targeting of activated endothelial cells. Ex vivo fluorescence imaging experiments demonstrated the targeting of biomimetic nanoparticles to the injured heart. EdU assay indicated that MMLNPs have the same potential to inhibit angiotensin (Ang) II-induced cardiac fibroblast proliferation as free lutein. Furthermore, echocardiography showed that MMLNPs improved cardiac function and structure, and Masson staining and western blotting showed that MMLNPs ameliorated cardiac fibrosis. We found MMLNPs inhibited the interleukin (IL)-11/ERK signaling pathway which was up-regulated in the TAC model compared to the sham-operated mouse. Biochemical testing and hematoxylin and eosin staining proved that the long-term use of MMLNPs lacked biological toxicity. Collectively, MMLNPs might be a promising nanodrug delivery approach to attenuate pressure overload (PO)-induced cardiac fibrosis.
Assuntos
Luteína , Nanopartículas , Camundongos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Luteína/farmacologia , Luteína/uso terapêutico , Biomimética , Células Endoteliais , Fibrose , Nanopartículas/química , Macrófagos/metabolismoRESUMO
SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
Assuntos
COVID-19 , Interleucina-11 , SARS-CoV-2 , Proteínas Virais , Humanos , SARS-CoV-2/genética , Proteínas Virais/genética , Fibrose Pulmonar IdiopáticaRESUMO
BACKGROUND: Recent studies have discovered an emerging role of IL11 in various colitis-associated cancers, suggesting that IL11 mainly promotes tumor cell survival and proliferation in regulating tumorigenesis. Herein we aimed to reveal a novel function of IL-11 through STAT3 signaling in regulating tumor immune evasion. METHODS: AOM/DSS model in Il11-/- and Apcmin/+/Il11-/- mice were used to detect tumor growth and CD8+ T infiltration. STAT1/3 phosphorylation and MHC-I, CXCL9, H2-K1 and H2-D1 expression were detected in MC38 cells and intestine organoids treated with/without recombinant IL11 to explore effect of IL11/STAT3 signaling, with IL11 mutein used to competitively inhibit IL11 and rescue inhibited STAT1 activation. Correlation between IL11 and CD8+ T infiltration was analyzed using TIMER2.0 website. IL11 expression and survival prognosis was analyzed in clinical data of patient cohort from Nanfang Hospital. RESULTS: IL11 is highly expressed in CRC and indicates unfavorable prognosis. IL11 knockout increased CD8+ T cell infiltration and reduced intestinal and colon formation. Tumors were significantly suppressed while MHC-I and CXCL9 expression for CD8+ T infiltration were remarkably increased in the tumor tissues of Apcmin/+/Il11-/- mice or Il11-/- mice induced by AOM/DSS. IL11/STAT3 signaling downregulated MHC-I and CXCL9 by inhibiting IFNγ-induced STAT1 phosphorylation. IL11 mutein competitively inhibit IL11 to upregulate CXCL9 and MHC-I in tumor and attenuated tumor growth. CONCLUSIONS: This study ascribes for a new immunomodulatory role for IL11 during tumor development that is amenable to anti-cytokine based therapy of colon cancer.
Assuntos
Neoplasias do Colo , Interleucina-11 , Camundongos , Animais , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Transdução de Sinais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citocinas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT3/metabolismoRESUMO
Emerging evidence has indicated the aberrant expression of PIWI-interacting RNAs (piRNAs) in human cancer cells to regulate tumor development and progression by governing cancer cell stemness. Herein, we identified downregulation of piR-2158 in human breast cancer tumors, especially in ALDH+ breast cancer stem cells (BCSCs) from patients and cell lines, which was further validated in two types of genetically engineered mouse models of breast cancer (MMTV-Wnt and MMTV-PyMT). Enforced overexpression of piR-2158 in basal-like or luminal subtypes of breast cancer cells suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness in vitro. Administration of a dual mammary tumor-targeting piRNA delivery system in mice reduced tumor growth in vivo. RNA-seq, ChIP-seq and luciferase reporter assays demonstrated piR-2158 as a transcriptional repressor of IL11 by competing with AP-1 transcription factor subunit FOSL1 to bind the promoter of IL11. STAT3 signaling mediated piR-2158-IL11 regulation of cancer cell stemness and tumor growth. Moreover, by co-culturing of MDA-MB-231 and HUVECs in vitro and CD31 staining of tumor endothelial cells in vivo, we demonstrated inhibition of angiogenesis by piR-2158-IL11 in breast cancer. In conclusion, the current study not only reveals a novel mechanism through which piR-2158 inhibits mammary gland tumorigenesis via regulating cancer stem cells and tumor angiogenesis, but also provides a novel therapeutic strategy in treatment of breast cancer.
Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Interleucina-11/genética , Células Endoteliais/metabolismo , Transdução de Sinais , Mama/patologia , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
Cytokines and chemokines (chemotactic cytokines) are soluble extracellular proteins that bind to specific receptors and play an integral role in the cell-to-cell signaling network. In addition, they can promote the homing of cancer cells into different organs. We investigated the potential relationship between human hepatic sinusoidal endothelial cells (HHSECs) and several melanoma cell lines for the expression of chemokine and cytokine ligands and receptor expression during the invasion of melanoma cells. In order to identify differences in gene expression related to invasion, we selected invasive and non-invasive subpopulations of cells after co-culturing with HHSECs and identified the gene expression patterns of 88 chemokine/cytokine receptors in all cell lines. Cell lines with stable invasiveness and cell lines with increased invasiveness displayed distinct profiles of receptor genes. Cell lines with increased invasive capacity after culturing with conditioned medium showed a set of receptor genes (CXCR1, IL1RL1, IL1RN, IL3RA, IL8RA, IL11RA, IL15RA, IL17RC, and IL17RD) with significantly different expressions. It is very important to emphasize that we detected significantly higher IL11RA gene expression in primary melanoma tissues with liver metastasis as well, compared to those without metastasis. In addition, we assessed protein expression in endothelial cells before and after co-culturing them with melanoma cell lines by applying chemokine and cytokine proteome arrays. This analysis revealed 15 differentially expressed proteins (including CD31, VCAM-1, ANGPT2, CXCL8, and CCL20) in the hepatic endothelial cells after co-culture with melanoma cells. Our results clearly indicate the interaction between liver endothelial and melanoma cells. Furthermore, we assume that overexpression of the IL11RA gene may play a key role in organ-specific metastasis of primary melanoma cells to the liver.
Assuntos
Neoplasias Hepáticas , Melanoma , Humanos , Citocinas/genética , Receptores de Quimiocinas , Células Endoteliais/metabolismo , Melanoma/metabolismo , Quimiocinas/genética , Neoplasias Hepáticas/genética , Expressão GênicaRESUMO
Stroma surrounding the tumor cells plays crucial roles for tumor progression. However, little is known about the factors that maintain the symbiosis between stroma and tumor cells. In this study, we found that the transcriptional regulator-signal transducer and activator of transcription 3 (Stat3) was frequently activated in cancer-associated fibroblasts (CAFs), which was a potent facilitator of tumor malignancy, and formed forward feedback loop with platelet-activating factor receptor (PAFR) both in CAFs and tumor cells. Importantly, PAFR/Stat3 axis connected intercellular signaling crosstalk between CAFs and cancer cells and drove mutual transcriptional programming of these two types of cells. Two central Stat3-related cytokine signaling molecules-interleukin 6 (IL-6) and IL-11 played the critical role in the process of PAFR/Stat3 axis-mediated communication between tumor and CAFs. Pharmacological inhibition of PAFR and Stat3 activities effectively reduced tumor progression using CAFs/tumor co-culture xenograft model. Our study reveals that PAFR/Stat3 axis enhances the interaction between tumor and its associated stroma and suggests that targeting this axis can be an effective therapeutic strategy against tumor malignancy.