RESUMO
BACKGROUND: Previous randomized controlled trials had established the efficacy of dupilumab among patients with chronic obstructive pulmonary disease (COPD) treated with triple therapy over 52 weeks of follow-up. OBJECTIVE: This population-based cohort study aimed to explore the long-term clinical effectiveness of dupilumab in COPD patients. METHODS: This population-based cohort study included U.S. patients with COPD between April 2017 and August 2024. Patients initiating dupilumab and therapies that incorporated long-acting ß2-agonists (LABA) inhalers were included. Patients with asthma or lung cancer were excluded. The risk of outcomes after the initiation of dupilumab versus LABA-containing therapies was measured. For detailed Methods, please see the Methods section in this article's Online Repository at www.jacionline.org. RESULTS: A total of 1,521 dupilumab initiators and 1,521 propensity score-matched patients receiving LABA-based therapies were included. Dupilumab recipients were associated with lower all-cause mortality (HR:0.53, 95% CI:0.43-0.65), emergency visits (HR:0.78, 95% CI:0.69-0.89), and acute exacerbation (AE) rates (HR:0.59, 95% CI:0.53-0.65). Dupilumab was also associated with reductions in the requirement of short-acting ß2-agonists (HR:0.48, 95% CI:0.43-0.52), short-acting muscarinic antagonists (HR:0.43, 95% CI:0.37-0.49) for symptoms control. Additionally, dupilumab decreased subsequent pneumonia (HR:0.65, 95% CI:0.50-0.86), and COPD-relevant comorbidities including new-onset heart failure (HR:0.69, 95% CI:0.53-0.90) and new-onset anxiety (HR:0.70, 95% CI:0.53-0.93). CONCLUSIONS: Dupilumab was associated with a lower rate of mortality, emergency visits, reduced risk of AEs, respiratory symptoms, and respiratory infections in COPD patients. More studies are required to validate the effectiveness of dupilumab among patients with COPD across various severities.
RESUMO
We examined candidate biomarkers for efficacy outcomes in hospitalized COVID-19 patients who were treated with sirukumab, an IL-6 neutralizing antibody, in a randomized, double-blind, placebo-controlled, phase 2 trial. Between May 2020 and March 2021, 209 patients were randomized (sirukumab, n = 139; placebo, n = 70); 112 had critical COVID-19. Serum biomarkers were evaluated for the pharmacodynamic effect of sirukumab and for their potential prognostic and predictive effect on time to sustained clinical improvement up to Day 28, clinical improvement at Day 28, and mortality at Day 28. The absence of detectable IL-4 increase and smaller increases in CCL13 post-baseline were most significantly associated with better response to sirukumab (versus placebo) treatment for all clinical efficacy outcomes tested, especially in patients with critical COVID-19. These data suggest that patients with critical COVID-19 without detectable sirukumab-induced IL-4 levels are more likely to benefit from sirukumab treatment. ClinicalTrials.gov Identifier: NCT04380961.
Assuntos
Anticorpos Monoclonais Humanizados , Biomarcadores , Tratamento Farmacológico da COVID-19 , COVID-19 , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Feminino , Biomarcadores/sangue , COVID-19/sangue , COVID-19/virologia , Pessoa de Meia-Idade , Prognóstico , Método Duplo-Cego , Idoso , SARS-CoV-2/isolamento & purificação , Interleucina-4/sangue , Resultado do Tratamento , Anticorpos Neutralizantes/sangue , Adulto , Índice de Gravidade de Doença , Interleucina-6/sangueRESUMO
BACKGROUND: Colorectal cancer (CRC) is the most common malignancy of the digestive system in the world. Immune cells and molecules in tumor microenvironment are crucial.Identifying immune system components in cancer aids in biomarker discovery. This study investigated the serum IgE levels and expression of IL-4 and IL-13 in the tissue and serum of CRC patients and explored their possible association with pathological and clinical factors. MATERIALS AND METHODS: Thirty-six patients with CRC and 36 healthy individuals were involved in the study. Tissues and blood samples were collected. Serum levels of IgE and IL-4 and IL-13 were analyzed using the ELISA method. The quantitative Real-Time PCR (qRT-PCR) technique was used to assess the expression levels of the cytokines in CRC tissue samples in comparison with the adjacent control tissue. RESULTS: Our results revealed that the serum level of IL-4 and IL-13 and also their gene expression levels were significantly decreased in CRC patients compared to the controls. The results of this study revealed that there is no significant difference in the serum levels of IgE between CRC patients and the control group. CONCLUSION: All in all, the results of the current research suggest that the expression levels of IL-13, IL-4, and IgE vary between CRC tissue.
RESUMO
BACKGROUND: The immunoglobulin superfamily protein Trem2 (triggering receptor expressed on myeloid cells 2) is primarily expressed on myeloid cells where it functions to regulate macrophage-related immune response induction. While macrophages are essential mediators of diabetic wound healing, the specific regulatory role that Trem2 plays in this setting remains to be established. OBJECTIVE: This study was developed to explore the potential importance of Trem2 signalling in diabetic wound healing and to clarify the underlying mechanisms through which it functions. METHODS AND RESULTS: Following wound induction, diabetic model mice exhibited pronounced upregulation of Trem2 expression, which was primarily evident in macrophages. No cutaneous defects were evident in mice bearing a macrophage-specific knockout of Trem2 (T2-cKO), but they induced more pronounced inflammatory responses and failed to effectively repair cutaneous wounds, with lower levels of neovascularization, slower rates of wound closure, decreased collagen deposition following wounding. Mechanistically, we showed that interleukin (IL)-4 binds directly to Trem2, inactivating MAPK/AP-1 signalling to suppress the expression of inflammatory and chemoattractant factors. Co-culture of fibroblasts and macrophages showed that macrophages from T2-cKO mice suppressed the in vitro activation and proliferation of dermal fibroblasts through upregulation of leukaemia inhibitory factor (Lif). Injecting soluble Trem2 in vivo was also sufficient to significantly curtail inflammatory responses and to promote diabetic wound healing. CONCLUSIONS: These analyses offer novel insight into the role of IL-4/Trem2 signalling as a mediator of myeloid cell-fibroblast crosstalk that may represent a viable therapeutic target for efforts to enhance diabetic wound healing.
Assuntos
Interleucina-4 , Glicoproteínas de Membrana , Receptores Imunológicos , Cicatrização , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Cicatrização/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Interleucina-4/metabolismo , Interleucina-4/genética , Camundongos Knockout , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BLRESUMO
Interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signalling pathways play important roles in the complex process of bone formation and bone remodelling. However, whether IL-4/IL-4Rα participates in skeletogenesis during embryonic development is not completely understood. We used the anti-IL-4Rα monoclonal antibody (anti-IL-4Rα mAb) as a powerful investigational tool to evaluate the potential roles of IL-4/IL-4Rα in the chondrogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. Simultaneously, we explored the effect of IL-4/IL-4Rα on bone ossification during rat embryo-fetal development. In this study, we found that, compared to the control group, IL-4 can significantly promote the chondrogenic differentiation of BMSCs. Furthermore, following exposure to anti-IL-4Rα mAb in pregnant rats, unexpected phenomena were observed in fetal bone development, including non-ossification of the fetal sternum, an incomplete ossification centre in long bones and a reduced number of ossification points in digit (toe) bones. To further investigate the underlying mechanism of the phenotype, we studied the rat sternum as the target organ, starting from different time points of sternum development in the embryonic stage. The results indicated that the retardation mainly occurred in the middle and late stages of embryonic development. This retardation was characterized by the inhibition of the differentiation process of mesenchymal stem cells into chondrocytes, resulting in reduced angiogenesis near the ossification centre, failure of osteoblasts to invade the centre of the cartilage body with the blood vessels and delayed formation of the primary ossification centre (POC). Overall, our study demonstrated the significant function of IL-4/IL-4Rα in chondrogenic differentiation of BMSCs and bone ossification during embryo-fetal development.
RESUMO
Ovarian cancer is resistant to immunotherapy, and this is influenced by the immunosuppressed tumor microenvironment (TME) dominated by macrophages. Resistance is also affected by intratumoral heterogeneity, whose development is poorly understood. To identify regulators of ovarian cancer immunity, we employed a spatial functional genomics screen (Perturb-map), focused on receptor/ligands hypothesized to be involved in tumor-macrophage communication. Perturb-map recapitulated tumor heterogeneity and revealed that interleukin-4 (IL-4) promotes resistance to anti-PD-1. We find ovarian cancer cells are the key source of IL-4, which directs the formation of an immunosuppressive TME via macrophage control. IL-4 loss was not compensated by nearby IL-4-expressing clones, revealing short-range regulation of TME composition dictating tumor evolution. Our studies show heterogeneous TMEs can emerge from localized altered expression of cancer-derived cytokines/chemokines that establish immune-rich and immune-excluded neighborhoods, which drive clone selection and immunotherapy resistance. They also demonstrate the potential of targeting IL-4 signaling to enhance ovarian cancer response to immunotherapy.
RESUMO
Objective: Depression is the most commonly observed psychological manifestation experienced by individuals diagnosed with cancer. The purpose of the study was to investigate the association between levels of IL-4, BDNF, neopterin, and depressive symptoms in lymphoma patients receiving consecutive cycles of chemotherapy. Methods: Newly diagnosed lymphoma patients scheduled to receive R-CHOP chemotherapy were enrolled. Effects of R-CHOP on circulatory biomarkers and depressive symptoms were assessed at three-time points [baseline assessment 7 days before the first dose of chemotherapy (TP1), interim assessment after the third cycle of chemotherapy (TP2), and follow-up assessment after the 6th cycle of chemotherapy (TP3)]. Results: Seventy lymphoma patients, with a mean age of 44.17 ± 13.67 years, were enrolled. Patients receiving R-CHOP were found significantly increased neopterin levels between given time points TP1 vs. TP2, TP1 vs. TP3, and TP2 vs. TP3 (p < 0.001). However, IL-4 and BDNF levels significantly decreased with consecutive cycles of chemotherapy (p < 0.001). On Patient Health Questionnaire assessment (PHQ-9), scores of items like loss of interest, feeling depressed, sleep problems, loss of energy, and appetite problems were found significantly affected with consecutive cycles of chemotherapy (p < 0.001). The study found weak negative correlations between IL-4, BDNF, and neopterin levels and changes in PHQ-9 scores at both TP2 and TP3, suggesting a potential inverse relationship between these markers and depression symptoms. Conclusion: In conclusion, the present study suggests a potential link between elevated neopterin levels, decreased IL-4, and BDNF levels, and the presence of depression in lymphoma patients receiving R-CHOP chemotherapy. This study provides valuable insights into understanding the emotional challenges faced by cancer patients, offering information for more personalized interventions and comprehensive support approaches within the oncology setting.
RESUMO
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Assuntos
Macrófagos , Transcriptoma , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Transcriptoma/genética , Glicólise , Ativação de Macrófagos , Redes e Vias Metabólicas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Metaboloma , Triptofano/metabolismo , Redes Reguladoras de Genes , Interferon gama/metabolismo , Colesterol/metabolismoRESUMO
The search for novel endometrial cancer diagnostic biomarkers is pertinent. The purpose of this study was to determine if IL-4, IL-7, IL-9, IL-10, NT, TSP-2, and NRP1 could be used as novel, helpful markers for the detection of endometrial cancer. Ninety-three women diagnosed with endometrial cancer (EC) and sixty-six patients with noncancerous endometrial lesions (NCEL) were included in this study. ELISA was used to measure the concentrations of the proteins tested. Median serum levels of IL-4, IL-7, IL-9, NT, and NRP1 were significantly higher in the EC group compared with NCEL. The cut-off level of IL-4 was set at 802.26 pg/mL with a sensitivity of 83.87% and a specificity of 50% (AUC = 0.7, p = 0.000023). The cut-off level of IL-7 was set at 133.63 ng/L with a sensitivity of 96.77% and a specificity of 75.76% (AUC = 0.91, p < 0.000001). The cut-off level of IL-9 was set at 228.79 pg/mL with a sensitivity of 69.89% and a specificity of 81.82% (AUC = 0.8, p < 0.000001). The cut-off level of NT was set at 275.43 pmol/L with a sensitivity of 94.62% and a specificity of 59.09% (AUC = 0.83, p < 0.000001). The cut-off level of NRP1 was set at 30.37 ng/mL with a sensitivity of 81.72% and a specificity of 57.58% (AUC = 0.71, p = 0.000004). This study suggests the clinical utility of IL-4, IL-7, IL-9, NT, and NRP1 in the diagnosis of endometrial cancer. Nevertheless, these biomarkers may also have prognostic or predictive value, which should be tested in future studies.
Assuntos
Biomarcadores Tumorais , Neoplasias do Endométrio , Interleucina-4 , Interleucina-7 , Neuropilina-1 , Humanos , Feminino , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/sangue , Biomarcadores Tumorais/sangue , Pessoa de Meia-Idade , Interleucina-7/sangue , Neuropilina-1/sangue , Neuropilina-1/metabolismo , Interleucina-4/sangue , Idoso , AdultoRESUMO
IL-4 and IL-13 play a critical role in allergic asthma pathogenesis via their common receptor, i.e., IL4Rα. However, the cell-specific role of IL4Rα in mixed allergens (MA)-induced allergic asthma has remained unclear. Therefore, we aimed to identify the cell-specific contribution of IL4Rα signaling in the manifestation of various pathological outcomes in mice with allergic airway disease. We compared MA-induced pathological outcomes between hematopoietic progenitor cells (HPCs)- or non-HPCs-specific IL4Rα-deficient chimera, myeloid cell-specific IL4Rα-deficient (LysMcre+/+/IL4Rαfl/fl), and airway epithelial cell-specific IL4Rα-deficient (CCSP-Cre+ /IL4Rαfl/fl) mice. Chimeric mice with systemic IL4Rα sufficiency displayed hallmark features of allergic asthma, including eosinophilic and lymphocytic infiltration, type 2 (Th2) cytokine/chemokine production, IgE production, and lung pathology. These features were markedly reduced in chimeric mice with systemic IL4Rα deficiency. Non-HPCs-specific IL4Rα-deficient mice displayed typical inflammatory features of allergic asthma but with markedly reduced mucous cell metaplasia (MCM). Deletion of IL4Rα signaling on airway epithelial cells, a subpopulation within the non-HPC lineage, resulted in almost complete absence of MCM. In contrast, all features of allergic asthma except for MCM and mucin production were mitigated in HPCs-specific IL4Rα-deficient chimeric mice. Deleting IL4Rα signaling in myeloid cells, a subpopulation within the HPC lineage, significantly alleviated MA-induced allergic airway inflammatory responses, but similar to the HPCs-specific IL4Rα-deficient chimeric mice, these mice showed significant MCM and mucin production. Our findings demonstrate that the differential allergen responsiveness seen in mice with HPCs-specific and non-HPCs-specific IL4Rα deficiency is predominantly driven by the absence of IL4Rα in myeloid cells and airway epithelial cells, respectively. Our findings also highlight distinct and mutually exclusive roles of IL4Rα signaling in mediating pathological outcomes within the myeloid and airway epithelial cell compartments.
RESUMO
Previously, eosinophils were primarily regarded as effector toxic cells involved in allergic diseases and parasitic infections. Nevertheless, new research has shown that eosinophils are diverse and essential for immune regulation and tissue homeostasis. Their functional plasticity has been observed in patients with inflammatory diseases, cancer, infections, and other disorders. Although eosinophils are infrequently observed within the liver during periods of homeostasis, they are recruited to the liver in various liver diseases, including liver parasitosis, acute liver injury, autoimmune liver disease, and hepatocellular carcinoma. Furthermore, eosinophils have demonstrated the capacity to promote liver regeneration. This article explores the multifaceted roles of eosinophils in liver diseases, aiming to provide insights that could lead to more effective clinical therapies for these conditions.
RESUMO
The adaptor protein tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifaceted regulator of lymphocyte biology that plays key roles in modulation of the molecular signals required for T-cell activation and function. TRAF3 regulates signals mediated by the T-cell receptor (TCR), costimulatory molecules, and cytokine receptors, which each drive activation of the serine/threonine kinase Akt. The impact of TRAF3 upon TCR-CD28-mediated activation of Akt, and thus on the diverse cellular processes regulated by Akt, including CD4 T-cell fate decisions, remains poorly understood. We show here that TRAF3 deficiency led to impaired Akt activation and thus to impaired in vitro skewing of CD4 T cells into the TH1 and TH2 fates. We investigated the role of TRAF3 in regulation of signaling pathways that drive TH1 and TH2 differentiation and found that TRAF3 enhanced activation of signal transducer and activator of transcription 6 (STAT6), thus promoting skewing toward the TH2 fate. TRAF3 promoted STAT6 activation by regulating recruitment of the inhibitory molecule protein tyrosine phosphatase 1B to the IL-4R signaling complex, in a manner that required integration of TCR-CD28- and IL-4R-mediated signals. This work reveals a new mechanism for TRAF3-mediated regulation of STAT6 activation in CD4 T cells and adds to our understanding of the diverse roles played by TRAF3 as an important regulator of T-cell biology.
Assuntos
Diferenciação Celular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Fator de Transcrição STAT6 , Fator 3 Associado a Receptor de TNF , Animais , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Camundongos , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais , Células Th2/metabolismo , Células Th2/citologia , Células Th2/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Th1/metabolismo , Células Th1/imunologia , Células Th1/citologia , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/metabolismo , HumanosRESUMO
Male infertility is a world multifactorial problem modulated by environmental and genetic factors. Male aspects account for 20-50â¯% of infertility cases. Our results are unique because they treat the importance of components participating in the determination of male infertility (environmental and immunogenetic determinants, seminological analysis, lipoperoxidation, genetic determinants, role of aluminum, arsenic, cadmium and boron). We analyzed agents affecting male reproductive potential (aluminum, boron, cadmium, arsenic, lipid peroxidation, gene polymorphisms (MTHFRv.C677T (rs1801133) (chromosome-1) and IL-4v.C589T (rs2243250) (chromosome-5) in men with semen disorders (n=76) and with normozoospermia (n=87) from Central Poland. Polymorphisms of MTHFRv.C677T and IL-4v.C589T genes indirectly shape toxic metals concentration and lipoperoxidation but do not exert direct influence on male fertility disorders (monomorphism and lack of differences in genotypes frequency). Men with genotype TT or CC (IL-4v.C589T) show some differentiation in elements concentration and intensity of lipoperoxidation. Analysis of TT or CC (IL-4v.C589T) genotype brought correlations with B, Al, Cd, and lipoperoxidation (P<0.05) and suggesting that mentioned factors jointly shape male reproductive capability. Toxic metals may play an important role in shaping of men genetic polymorphisms, since Cd was identified as a factor increasing risk of qualification to infertile group, predisposing to fertility disorders. B, Al and Cd may be considered as important modulators of reproductive condition. However, lipoperoxidation as an isolated predictive parameter does not produce convincing results in male reproductive potential (higher MDA concentration in healthy men). Our results may be helpful in the diagnosis of male infertility, in the reduction of idiopathic cases of unknown origin and in implementation of targeted and more effective treatment (pharmacological, hormonal). Identification of environmental stressors and their correlations with fertility disorders can help to eliminate or reduce the impact of factors unfavorable to fertility. Our results highlight the importance of environmental and immunogenetic factors in shaping of defensive potential against destruction of spermatozoa and infer a role of oxidative stress in the induction of gene polymorphisms, affecting male fertility.
Assuntos
Alumínio , Arsênio , Boro , Cádmio , Infertilidade Masculina , Interleucina-4 , Peroxidação de Lipídeos , Polimorfismo Genético , Masculino , Humanos , Arsênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Cádmio/toxicidade , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/genética , Interleucina-4/genética , Polônia , Alumínio/toxicidade , Adulto , Boro/toxicidade , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Fertilidade/efeitos dos fármacos , Genótipo , Poluentes Ambientais/toxicidadeRESUMO
BACKGROUND: Gastric cancer (GC) remains a significant global health challenge with poor prognosis, partly due to its ability to evade the immune system. The extracellular matrix (ECM), particularly collagen, plays a crucial role in tumor immune evasion, but the underlying mechanisms are not fully understood. This study investigates the role of collagen ECM in promoting immune evasion in gastric cancer by activating the IL4I1-AHR signaling pathway. METHODS: We cultured gastric cancer cells in 3D collagen gels and assessed their immune evasion capabilities by co-culturing with HER2-specific CAR-T cells. The expression of IL4I1 and its metabolites was analyzed, and the role of integrin αvß1 in mediating the effects of collagen was explored. Additionally, the impact of IL4I1-induced AHR activation on CAR-T cell exhaustion was evaluated, both in vitro and in vivo. RESULTS: We found that gastric cancer cells cultured on collagen exhibited increased resistance to CAR-T cell cytotoxicity, which was associated with upregulated immune checkpoint molecules and downregulated effector cytokines on CAR-T cells. This was linked to increased IL4I1 expression, which was further induced by integrin αvß1 signaling within the 3D collagen environment. IL4I1 metabolites, particularly KynA, promoted CAR-T cell exhaustion by activating the AHR pathway, leading to decreased cytotoxicity and tumor growth inhibition. CONCLUSIONS: Our study reveals a novel mechanism by which the collagen ECM facilitates immune evasion in gastric cancer through the activation of IL4I1-AHR signaling, contributing to CAR-T cell exhaustion. Targeting this pathway could potentially enhance the efficacy of CAR-T cell therapy in gastric cancer.
RESUMO
Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs). We show that IL4Ra signaling in macrophages promotes regeneration of the alveolar epithelium after bleomycin-induced lung injury. Using organoids and mouse models, we show that IL-4 directly acts on a subset of ATIIs to induce the expression of the transcription factor SOX9 and reprograms them toward a progenitor-like state with both airway and alveolar lineage potential. In the contexts of aging and bleomycin-induced lung injury, this leads to aberrant epithelial cell differentiation and bronchiolization, consistent with cellular and histological changes observed in interstitial lung disease.
Assuntos
Bleomicina , Linhagem da Célula , Interleucina-4 , Pulmão , Fatores de Transcrição SOX9 , Animais , Interleucina-4/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células-Tronco Adultas/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Envelhecimento/metabolismo , Diferenciação Celular , Transdução de Sinais , Humanos , Macrófagos/metabolismoRESUMO
Keloids, characterized by excessive scar formation following dermal inflammation, pose a therapeutic challenge due to high recurrence rates. Radiation therapy, contraindicated in children, can minimize recurrence post-surgical removal. Dupilumab, which inhibits the pro-fibrotic interleukin-4/interleukin-13 axis, may effectively manage keloids when intralesional corticosteroid injections are unsuccessful. It may also prevent recurrence post-surgery in pediatric patients. This systematic review assesses the efficacy and safety of dupilumab for the treatment of keloids. Through a systematic search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we identified and analyzed outcomes from three case reports and three case series studies, totaling 15 patients. Results indicate variable responses to treatment, including significant improvements, no clinical change, and worsening of keloid symptoms. Additional research is needed to recommend using dupilumab to treat keloids (Grade D). Treatment response variability may be linked to differences in interleukin-4/interleukin-13 activity between active and inactive keloids. Additionally, the unintended promotion of T helper 17 cell differentiation by dupilumab may worsen keloids.
Assuntos
Anticorpos Monoclonais Humanizados , Queloide , Humanos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Interleucina-13 , Interleucina-4/metabolismo , Queloide/tratamento farmacológico , Queloide/terapia , Resultado do TratamentoRESUMO
Biomass-related airborne fine particulate matter (PM2.5) is an important risk factor for chronic obstructive pulmonary disease (COPD). Macrophage polarization has been reported to be involved in PM2.5-induced COPD, but the dynamic characteristics and underlying mechanism of this process remain unclear. Our study established a PM2.5-induced COPD mouse model and revealed that M2 macrophages predominantly presented after 4 and 6 months of PM2.5 exposure, during which a notable increase in MMP12 was observed. Single cell analysis of lung tissues from COPD patients and mice further revealed that M2 macrophages were the dominant macrophage subpopulation in COPD, with MMP12 being involved as a hub gene. In vitro experiments further demonstrated that PM2.5 induced M2 polarization and increased MMP12 expression. Moreover, we found that PM2.5 increased IL-4 expression, STAT6 phosphorylation and nuclear translocation. Nuclear pSTAT6 then bound to the MMP12 promoter region. Furthermore, the inhibition of STAT6 phosphorylation effectively abrogated the PM2.5-induced increase in MMP12. Using a coculture system, we observed a significantly reduced level of E-cadherin in alveolar epithelial cells cocultured with PM2.5-exposed macrophages, while the decrease in E-cadherin was reversed by the addition of an MMP12 inhibitor to the co-culture system. Taken together, these findings indicated that PM2.5 induced M2 macrophage polarization and MMP12 upregulation via the IL-4/STAT6 pathway, which resulted in alveolar epithelial barrier dysfunction and excessive extracellular matrix (ECM) degradation, and ultimately led to COPD progression. These findings may help to elucidate the role of macrophages in COPD, and suggest promising directions for potential therapeutic strategies.
Assuntos
Interleucina-4 , Macrófagos , Metaloproteinase 12 da Matriz , Material Particulado , Doença Pulmonar Obstrutiva Crônica , Fator de Transcrição STAT6 , Regulação para Cima , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Metaloproteinase 12 da Matriz/metabolismo , Animais , Material Particulado/toxicidade , Fator de Transcrição STAT6/metabolismo , Camundongos , Macrófagos/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Poluentes Atmosféricos/toxicidadeRESUMO
Introduction: Inflammatory bowel disease (IBD) is a global health concern. Aloe-emodin (AE) has diverse pharmacological benefits, including anti-inflammatory effects. However, its role in IBD remains unclear, prompting our investigation of its regulatory effects and mechanisms in an IBD mouse model. Methods: We studied the therapeutic efficacy of AE in alleviating symptoms and modulating cytokine secretion in a murine model of dextran sulfate sodium (DSS)-induced colitis. BALB/c mice were administered DSS to induce colitis and were subsequently treated with varying doses of AE. Changes in body weight, fecal lipocalin-2 (LCN2) levels, colon tissue histology, and serum cytokine concentrations were evaluated to assess the effects of AE treatment. Additionally, 16 S rRNA sequencing was used to analyze alterations in the composition of the gut microbiota following AE intervention. Finally, the database was used to analyze the signaling pathways associated with IBD in AE and to detect the expression levels of interleukin (IL)-4 pathway using real-time quantitative reverse transcription PCR. Exogenous IL-4 was used in rescue experiments to observe its effects on the disease process of IBD under AE regulation. Results: AE treatment resulted in a dose-dependent mitigation of weight loss, reduction in fecal LCN2 levels, and amelioration of histological damage in DSS-induced colitis in mice. The levels of superoxide dismutase and catalase increased, whereas malondialdehyde decreased following AE treatment, indicating a dose-dependent alleviation of colitis symptoms. Furthermore, AE administration attenuated the secretion of pro-inflammatory cytokines, including IL-17, tumor necrosis factor-alpha (TNF-α), and chemokine ligand 1, while promoting the expression of anti-inflammatory cytokines IL-4 and IL-13. Analysis of the gut microbiota revealed that AE effectively suppressed the overgrowth of colitis-associated bacterial species and restored microbial homeostasis. Finally, we found that overexpression of IL-4 was able to reverse the therapeutic effect of AE for DSS-induced IBD. Conclusion: AE shows promise in alleviating colitis severity, influencing inflammatory cytokines, and modulating the gut microbiota in an IBD mouse model via the IL-4/IL-13 pathway, suggesting its potential as a natural IBD remedy.
RESUMO
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Assuntos
Aminoácidos , Arginase , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Imunoterapia/métodos , Animais , Aminoácidos/metabolismo , Arginase/metabolismo , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Evasão Tumoral , Óxido Nítrico Sintase Tipo II/metabolismo , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Terapia de Alvo Molecular , Microambiente Tumoral/imunologia , L-Aminoácido OxidaseRESUMO
Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, plays a central role in homeostasis and disease. Interestingly, some of the pleiotropic effects of LIF have been attributed to the modulation of macrophage functions although the molecular underpinnings have not been explored at a genome-wide scale. Herein, we investigated LIF-driven transcriptional changes in murine bone marrow-derived macrophages (BMDM) by RNA-seq. In silico analyses revealed a selective and time-dependent remodelling of macrophage gene expression programs associated with lipid metabolism and cell activation. Accordingly, a subset of LIF-upregulated transcripts related to cholesterol metabolism and lipid internalization was validated by RT-qPCR. This was accompanied by a LIF-enhanced capacity for lipid accumulation in macrophages upon incubation with oxidated low-density lipoprotein (Ox-LDL). Mechanistically, LIF triggered the phosphorylation (Y705 and S727) and nuclear translocation of the transcription factor STAT3 in BMDM. Consistent with this, Ingenuity Pathway Analysis (IPA) identified STAT3 as an upstream regulator of a subset of transcripts, including Il4ra, in LIF-treated macrophages. Notably, LIF priming enhanced BMDM responses to IL-4-mediated M2 polarization (i.e., increased arginase activity and accumulation of transcripts encoding for M2 markers). Conversely, LIF stimulation had no significant effect in BMDM responses to M1 polarizing stimuli (IFNγ and LPS). Thus, our study provides insight into the transcriptional landscape of LIF-treated macrophages, shedding light on its role in lipid metabolism and M2 polarization responses. A better understanding of the regulatory mechanisms governing LIF-driven changes might help informing novel therapeutic approaches aiming to reprogram macrophage phenotypes in diseased states (e.g., cancer, atherosclerosis, infection, etc.).