RESUMO
BACKGROUND AND AIMS: A gonadotropin-releasing hormone (GnRH)-based therapeutic vaccine candidate against hormone-sensitive prostate cancer has demonstrated its safety and signs of efficacy in phase I/II trials. In this study, we characterized the isotype/subclass profiles of the anti-GnRH humoral response generated by the vaccination and analyzed its association with patients' clinical outcomes. METHODS: The immunoglobulin isotypes and IgG subclasses of the antibody responses of 34 patients included in a randomized, open, prospective phase I/II clinical trial were characterized. Every patient included in the study had a diagnosis of locally advanced prostate adenocarcinoma at stages 3 and 4 and received immunization with the vaccine candidate. Additionally, serum testosterone and prostate specific antigen (PSA) concentrations, serving as indicators of tumor response, were determined. The type of anti-GnRH antibody response was correlated to the time elapsed until the first biochemical recurrence in patients and the outcome of the disease. RESULTS: All patients developed strong and prolonged anti-GnRH antibody responses, resulting in a short- to mid-term decrease in serum testosterone and PSA levels. Following immunizations, anti-GnRH antibodies of the IgM/IgG and IgG1/IgG3 subclasses were observed. Following radiotherapy, the humoral response switched to IgG (IgG1/IgG4). Patients who experienced a short-term biochemical relapse were characterized by significantly higher levels of anti-GnRH IgG titers, particularly IgG1 and IgG4 subclasses. These characteristics, along with a high response of specific IgM antibodies at the end of immunizations and the development of anti-GnRH IgA antibody responses following radiotherapy, were observed in patients whose disease progressed, compared to those with controlled disease. CONCLUSION: The nature of the humoral response against anti-GnRH, induced by vaccination may play a key role in activating additional immunological mechanisms. Collectively, these mechanisms could contribute significantly to the regulation of tumor growth.
Assuntos
Adenocarcinoma , Neoplasias da Próstata , Vacinas , Masculino , Humanos , Hormônio Liberador de Gonadotropina , Antígeno Prostático Específico , Estudos Prospectivos , Próstata , Recidiva Local de Neoplasia , Imunização , Neoplasias da Próstata/terapia , Vacinação , Imunoglobulina G , Testosterona , Castração , Adenocarcinoma/terapia , Imunoglobulina MRESUMO
The analysis of the immunogenetic background of multiple myeloma (MM) has proven key to understanding disease ontogeny. However, limited information is available regarding the immunoglobulin (IG) gene repertoire in MM cases carrying different heavy chain isotypes. Here, we studied the IG gene repertoire in a series of 523 MM patients, of whom 165 and 358 belonged to the IgA and IgG MM groups, respectively. IGHV3 subgroup genes predominated in both groups. However, at the individual gene level, significant (p<0.05) differences were identified regarding IGHV3-21 (frequent in IgG MM) and IGHV5-51 (frequent in IgA MM). Moreover, biased pairings were identified between certain IGHV genes and IGHD genes in IgA versus IgG MM. Turning to the imprints of somatic hypermutation (SHM), the bulk of rearrangements (IgA: 90.9%, IgG: 87.4%) were heavily mutated [exhibiting an IGHV germline identity (GI) <95%]. SHM topology analysis disclosed distinct patterns in IgA MM versus IgG MM cases expressing B cell receptor IG encoded by the same IGHV gene: the most pronounced examples concerned the IGHV3-23, IGHV3-30 and IGHV3-9 genes. Furthermore, differential SHM targeting was also identified between IgA MM versus IgG MM, particularly in cases utilizing certain IGHV genes, alluding to functional selection. Altogether, our detailed immunogenetic evaluation in the largest to-date series of IgA and IgG MM patients reveals certain distinct features in the IGH gene repertoires and SHM. These findings suggest distinct immune trajectories for IgA versus IgG MM, further underlining the role of external drive in the natural history of MM.
RESUMO
Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.
Assuntos
COVID-19 , Testosterona , Humanos , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Estrogênio , Caracteres Sexuais , SARS-CoV-2 , Imunoglobulina G , Estrogênios , Camundongos Knockout , Imunoglobulina ARESUMO
Monoclonal gammopathies of renal significance (MGRS) encompass a remarkable variety of kidney diseases that result from intrinsic nephrotoxic properties of certain monoclonal Igs or their subunits. Effective disease-modifying treatments rely on the targeting of a malignant B-cell clone that may be demonstrable but often is quite hypothetical. Hence, convincing arguments for the genuine monoclonal character of the causative mono-isotypic Ig tissue deposits is needed for design of appropriate treatment strategies. The purpose of this article was to critically analyze distinct situations of suspected MGRS that occur in the practice of pathologists, nephrologists, hematologists, and immunologists. A particular focus of interest is the group of conditions known as proliferative glomerulonephritis with mono-isotypic immunoglobulin deposits (PGNMIDs), which illustrates the difficulties and ambiguities surrounding a definitive assignment of MGRS status.
RESUMO
The late 1970s brought opportunities to create proteins with new properties and, in particular, various derivatives of mouse monoclonal antibodies (mAbs) owing to the discoveries in molecular and cell biology and the development of bioengineering. Studies of mouse/human "chimeric" antibodies, miniantibodies to be synthesized in bacterial cells, full-size single-chain antibodies, complexes of miniantibodies with intramolecular chaperones, and other approaches made it possible to create a multitude of multifunctional biopreparations with predefined properties. The review describes, with the example of one research team, how studies in the field began and what the basis for their progress was.
Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais/biossíntese , Imunoterapia/métodos , Neoplasias/terapia , Proteínas Recombinantes de Fusão/biossíntese , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Hibridomas/imunologia , Imunoterapia/história , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genéticaRESUMO
Each immunoglobulin isotype has unique immune effector functions. The contribution of these functions in the elimination of pathogens and tumors can be determined by monitoring quantitative temporal changes in isotype levels. Here, we developed a novel technique using magneto-nanosensors based on the effect of giant magnetoresistance (GMR) for longitudinal monitoring of total and antigen-specific isotype levels with high precision, using as little as 1 nL of serum. Combining in vitro serologic measurements with in vivo imaging techniques, we investigated the role of the antibody response in the regression of firefly luciferase (FL)-labeled lymphoma cells in spleen, kidney, and lymph nodes in a syngeneic Burkitt's lymphoma mouse model. Regression status was determined by whole body bioluminescent imaging (BLI). The magneto-nanosensors revealed that anti-FL IgG2a and total IgG2a were elevated and sustained in regression mice compared to non-regression mice (p < 0.05). This platform shows promise for monitoring immunotherapy, vaccination, and autoimmunity.
Assuntos
Formação de Anticorpos , Técnicas Biossensoriais/instrumentação , Linfoma de Burkitt/imunologia , Imunoglobulina G/análise , Magnetismo/instrumentação , Animais , Linfoma de Burkitt/sangue , Linfoma de Burkitt/diagnóstico por imagem , Desenho de Equipamento , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica/instrumentação , Tamanho da AmostraRESUMO
Compared to the evolutionary diversity of antibody isotypes, the spectrum of currently approved therapeutic antibodies is biased to the human IgG1 isotype. Detailed studies into the different structures and functions of human isotypes have suggested that other isotypes than IgG1 may be advantageous for specific indications - depending on the complex interplay between the targeted antigen or epitope, the desired mode of action, the pharmacokinetic properties, and the biopharmaceutical considerations. Thus, it may be speculated that with the increasing number of antibodies becoming available against a broadening spectrum of target antigens, identification of the optimal antibody isotype for particular therapeutic applications may become critical for the therapeutic success of individual antibodies. Thus, investments into this rather unexplored area of antibody immunotherapy may provide opportunities for distinction in the increasingly busy 'antibody space'. Therefore, IgG, IgA, IgE as well as IgM isotypes will be discussed in this review.
RESUMO
BACKGROUND: The immune system undergoes several alterations of innate and adaptive immunity during ageing. The main features of the aged immune system are a reduced diversity of T cell receptors and a reduced activity of innate immune cells with subsequent changes in adaptive immunity resulting in a less effective, less specific, and dys-regulated immune response and in an increased susceptibility towards infection, malignancy, and autoimmunity. The process is referred to as immunosenescence and is also modulated by environmental modifiers, such as dietary factors. High fat diet (HFD), via direct modulation of immune cell function by fatty acids and/or increased body fat mass, influences immune function. However, it is not clear whether HFD is beneficial or detrimental for the functioning of the ageing immune system. METHODS: Male Wistar rats fed with either a high fat diet (HFD 43 en% of fat) or control diet (SD, 25 en% of fat) over up to 24 month and were analyzed for plasma IL-1ß, IL-6, TNF, IgM, IgG1, IgA, IgG2a, IgG2b, IgG2c, light chains lambda and kappa, testosterone, prolactin and percentage of splenic B cells and apoptosis rate, respectively. RESULTS: In general, all analyzed immunoglobuline isotypes increased with age, except for IgA. This increase was attenuated by HFD. In HFD and SD rats the percentage of B cells in the spleen and also their apoptotic rate was lower in aged as compared to young animals with no additional diet-induced effect. Testosterone and prolactin levels were lower in old animals, as expected. There was a statistical trend towards an increased prolactin/testosterone ratio in middle aged (6-12 monthsnth) HFD rats as compared to SD. IL-6 was neither affected by HFD nor age. On the other hand, HFD rats showed a decrease in IL-1ß as compared to SD, which correlated with the above-mentioned suppressive effect on immunoglobulin isotypes, especially IgM. CONCLUSION: In Wistar rats, HFD reveals an immunosuppressive effect in ageing animals by decreasing immunoglobulins, especially IgM, and IL-1ß when compared to SD.
RESUMO
BACKGROUND: Pan-IgG specific monoclonal antibodies (MAbs) are essential tools for assessment of humoral immunity, immune deficiency and gammopathy. In this study, four hybridoma clones producing MAbs with different specificities for human IgG isotypes were established. METHODS: Splenocytes from Balb/c mice immunized with Fc fractions of human IgG were fused with SP2/0 myeloma cells. Hybridoma cells were selected in HAT selective medium and cloned by limiting dilution assay. Antibody-secreting cells were screened by enzyme-linked immunosorbent assay (ELISA) and the specificity of secreted MAbs was further analyzed using a panel of purified myeloma IgG proteins by ELISA and immunoblotting. Cross-reactivity to immunoglobulins (Igs) of other species was studied by indirect ELISA using serum samples collected from 9 animals. RESULTS: Immunoblotting studies revealed recognition of either linear or conformational epitopes by these MAbs. The most abundant cross-reactivity (100%) was observed with monkey Igs, while no cross-reactivity was detected with rabbit, guinea pig, sheep, goat, cat and hen sera. Two of the MAbs cross-reacted with either dog or horse sera. The affinity constant of two MAbs was measured by ELISA and found to be 0.74×10(8)M(-1) and 0.96×10(7)M(-1). CONCLUSION: Our results indicate that these pan-IgG specific MAbs recognize restricted linear or conformational epitopes located on all human IgG subclasses with no cross-reactivity to IgG from most species studied. These MAbs are potentially useful tools for quantification of total or antigen-specific IgG levels.
RESUMO
In human toxocariasis, there are few approaches using immunological markers for diagnosis and therapeutic assessment. An immunoblot (IB) assay using excretory-secretory Toxocara canis antigen was standardized for monitoring IgG, IgE and IgA antibodies in 27 children with toxocariasis (23 visceral, three mixed visceral and ocular, and one ocular form) for 22-116 months after chemotherapy. IB sensitivity was 100 percent for IgG antibodies to bands of molecular weight 29-38, 48-54, 95-116, 121-162, >205 kDa, 80.8 percent for IgE to 29-38, 48-54, 95-121, > 205 kDa, and 65.4 percent for IgA to 29-38, 48-54, 81-93 kDa. Candidates for diagnostic markers should be IgG antibodies to bands of low molecular weight (29-38 and 48-54 kDa). One group of patients presented the same antibody reactivity to all bands throughout the follow-up study; in the other group, antibodies decayed partially or completely to some or all bands, but these changes were not correlated with time after chemotherapy. Candidates for monitoring patients after chemotherapy may be IgG antibodies to > 205 kDa fractions, IgA to 29-38, 48-54, 81-93 kDa and IgE to 95-121 kDa. Further identification of antigen epitopes related to these markers will allow the development of sensitive and specific immunoassays for the diagnosis and therapeutic assessment of toxocariasis.
Métodos imunológicos desempenham papel importante no diagnóstico da toxocaríase, entretanto há poucos estudos sobre marcadores diagnósticos e de acompanhamento terapêutico. Foi padronizado ensaio de immunoblot (IB) empregando antígeno de excreção-secreção de Toxocara canis para pesquisa de anticorpos IgG, IgE e IgA em 27 crianças com toxocaríase nas formas visceral (23), mista visceral e ocular (3) e ocular (1), por 22-116 meses após quimioterapia. Foram observados dois perfis de reatividade dos anticorpos: permanência contra todas as frações no decorrer do estudo; diminuição ou negativação contra algumas ou todas as frações, porém, essas mudanças não se correlacionaram com tempo de tratamento. A sensibilidade do IB foi 100,0 por cento para anticorpos IgG específicos para frações de massa molecular de 29-38, 48-54, 95-116, 121-162, > 205 kDa, 80,8 por cento para IgE específicos para 29-38, 48-54, 95-121, > 205 kDa e 65,4 por cento para IgA específicos para 29-38, 48-54, 81-93 kDa. Anticorpos IgG específicos para frações de baixa MM (29-38 e 48-54 kDa) podem ser sugeridos como candidatos a marcadores diagnósticos. Por sua vez, anticorpos IgG para fração > 205 kDa, IgA para 29-38, 48-54, 81-93 kDa e IgE para 95-121 kDa podem ser candidatos a marcadores terapêuticos. A identificação de epítopos antigênicos relacionados a estes marcadores poderá ser importante para o desenvolvimento de ensaios altamente sensíveis e específicos no diagnóstico e avaliação terapêutica da toxocaríase.
Assuntos
Animais , Criança , Pré-Escolar , Humanos , Lactente , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos , Proteínas de Helminto , Imunoglobulinas/sangue , Toxocara canis/imunologia , Toxocaríase/diagnóstico , Anti-Helmínticos/uso terapêutico , Western Blotting , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Seguimentos , Sensibilidade e Especificidade , Tiabendazol/uso terapêutico , Toxocaríase/tratamento farmacológicoRESUMO
An experimental inactivated vaccine against bovine herpesvirus-1 (BoHV-1) was produced aiming to evaluate the systemic and local antibody responses in 12 seronegative heifers, after vaccination and revaccination. Serum samples were submitted to virus neutralization assay and to ELISA test for detection of IgG1 and IgG2 isotypes. Nasal secretion samples were submitted to the same ELISA test for detection of IgG1 and IgG2 isotypes. The results showed that moderate to high neutralizing titres and IgG1 and IgG2 antibody responses were induced after the second vaccination in the serum and in nasal secretions up to 114 days post vaccination. IgG2 antibodies were the prevalent isotype for most of the post-vaccination period. The results indicate that BoHV-1 experimental inactivated vaccine elicited potentially protective IgG1 and IgG2 antibody levels, both in the systemic and mucosal compartments.
Uma vacina experimental inativada contra o herpesvírus bovino tipo 1 (BoHV-1) foi produzida com o objetivo de se avaliar a resposta imune humoral local e sistêmica contra o BoHV-1, em 12 novilhas soronegativas, após a vacinação e a revacinação. Os soros foram submetidos à prova de vírus-neutralização para quantificação do título de anticorpos neutralizantes e a um ELISA para detecção de IgG1 e IgG2. Os swabs nasais também foram submetidos ao ELISA para detecção de IgG1 e IgG2 na secreção nasal. Os resultados demonstraram que títulos de anticorpos neutralizantes foram induzidos após a revacinação, em níveis moderados a altos, permanecendo em níveis significativos no soro sanguíneo e na secreção nasal até o dia 114 pós-vacinação. O IgG2 foi o isótipo predominante na maior parte do período pós-vacinação, tanto na secreção nasal, como no compartimento sistêmico. A vacina experimental inativada contra o BoHV-1 estimulou níveis de anticorpos potencialmente protetores dos isótipos IgG1 e IgG2, tanto no compartimento sistêmico, como nas mucosas.