RESUMO
The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10â¯% and 46.67â¯% in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68â¯%-6.18â¯% and 8.64-19.16â¯%, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.
Assuntos
Chuva Ácida , Cádmio , Nitrogênio , Populus , Rizosfera , Plântula , Microbiologia do Solo , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Populus/efeitos dos fármacos , Populus/microbiologia , Populus/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Nitrogênio/análise , Solo/química , Microbiota/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacosRESUMO
Nitrogen pollution and the rising amount of wastewater generation are calling for advanced wastewater treatments, which is particularly necessary for carbon-deficient wastewater that contains multi-species inorganic nitrogen, since conventional heterotrophic denitrification processes cannot remove nitrogen completely when carbon sources are insufficient. For that, bioelectrochemical systems (BES) have been recently developed because they can simultaneously produce electricity and remove resistant nitrogen from the carbon-deficient wastewater. However, the simultaneous removal of multi-species inorganic nitrogen cannot be achieved by electroautotrophic denitrification using BES alone. Moreover, the efficiency of nitrogen removal and power generation has been thwarted by the low energy output, high internal resistance of the device, and electron competition in non-denitrification pathways. This review article discusses the latest developments for nitrogen removal through BES-enhanced denitrification and elucidates multiple coupled BES-based denitrification pathways to remove multi-species inorganic nitrogen simultaneously. Focus points of the research area include coupling BES technologies with emerged methods, electron transfer enhancement, and avoiding electron competition that improves performance with less cost. The prospect of reducing emissions of greenhouse gases is also critically reviewed, in the hope of reducing potential intermediate products of denitrification, such as nitrous oxide (a potent greenhouse gas), through multi-factor regulation. We imply that BES is a good choice for future scale-up applications of MFC coupled with MEC to treat carbon-deficient wastewater. Overall, this review will provide useful information for the development of advanced technologies to treat carbon-deficient wastewater with less emission of greenhouse gases.
Assuntos
Gases de Efeito Estufa , Águas Residuárias , Nitrogênio , Carbono , Desnitrificação , Reatores BiológicosRESUMO
Organic and inorganic nitrogen ions in the environment play important role across environmental matrices. Rainwater samples collected from ambient and different roofing surfaces (zinc, aluminium, asbestos and stone-coated roofing sheets) from selected locations at Ogale, Rumuodomaya/Rumuodome, Diobu and Chokocho within Rivers State, Niger Delta, Nigeria, from April to June, July to August and September to October depicting three regiments of early, mid and late rains. The samples were analysed for Kjeldahl nitrogen, ammonium, nitrate and nitrite using APHA methodology. Quantitative assessment showed that Kjeldahl nitrogen were in range of 0.11 to 28.05 mg/L; ammonium 0.50 to 20.22 mg/L, nitrate from 0.12 to 22.69 mg/L and nitrite from 0.15 to 3.90 mg/L. Parameters decreased from early to late rain, which can be attributed to rain dilution factor potential, wind pattern and emission from anthropogenic sources that influenced the rainwater quality across surfaces. Nitrogen results showed that dry and wet deposition has great impact; atmospheric aerosols and biogeochemical interactions can affect water quality. Monthly variation showed that Ogale had high regression compared to other locations due to close proximity to oil and gas emission and marine contribution. Neutralization factor showed that nitrate-nitrite compounds have strong correlation with ammonium ion. Non-carcinogenic risk assessment using US EPA model showed hazard index less than one (1), thus no associated health effect of nitrate and nitrite in rainwater. In conclusion, it is evident that nitrate/nitrite levels and other nitrogen derivatives in rainwater in crude oil-producing Niger Delta and its continuous consumption can cause negative health outcome.
Assuntos
Compostos de Amônio , Petróleo , Aerossóis/análise , Alumínio/análise , Compostos de Amônio/análise , Quimiometria , Monitoramento Ambiental/métodos , Nigéria , Nitratos/análise , Nitritos/análise , Nitrogênio/análise , Óxidos de Nitrogênio/análise , Compostos Orgânicos , Petróleo/análise , Medição de Risco , Zinco/análiseRESUMO
The evolutionarily conserved target-of-rapamycin (TOR) kinase coordinates cellular and organismal growth in all eukaryotes. Amino acids (AAs) are key upstream signals for mammalian TOR activation, but how nitrogen-related nutrients regulate TOR signaling in plants is poorly understood. Here, we discovered that, independent of nitrogen assimilation, nitrate and ammonium function as primary nitrogen signals to activate TOR in the Arabidopsis leaf primordium. We further identified that a total of 15 proteinogenic AAs are also able to activate TOR, and the first AAs generated from plant specific nitrogen assimilation (glutamine), sulfur assimilation (cysteine), and glycolate cycle (glycine), exhibit the highest potency. Interestingly, nitrate, ammonium, and glutamine all activate the small GTPase Rho-related protein from plants 2 (ROP2), and constitutively active ROP2 restores TOR activation under nitrogen-starvation conditions. Our findings suggest that specific evolutionary adaptations of the nitrogen-TOR signaling pathway occurred in plant lineages, and ROP2 can integrate diverse nitrogen and hormone signals for plant TOR activation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Nitrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Arabidopsis/citologia , Proliferação de Células , Metabolismo Energético , Glucose/metabolismo , Nitratos/metabolismo , Nitrogênio/deficiência , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimentoRESUMO
Amine-containing pharmaceuticals formed nitrosamines that are nitrogenous disinfection byproducts of public concerns due to their carcinogenicity. The objective of this study was to investigate the co-effect of additional inorganic nitrogen in different forms (ammonium, nitrite, and nitrate) and different disinfection approaches (chlorination, monochloramination, dichloramination, and two-step chlorination) on eight nitrosamine formation from four widely used pharmaceuticals. N-nitrosodimethylamine (NDMA) was the main species formed. The presence of N-nitrosomethylethylamine (NMEA), nitrosomorpholine (NMor), and N-nitrosopiperidine (NPip) was found in certain experiments. For one-step chlorination, the influential factors, in decreasing order of importance, were the molecular structural characteristics of the pharmaceutical, oxidation method, and presence and form of additional nitrogen. In four pharmaceuticals with comparative structures, the availability of amine intermediates during degradation was the key to higher nitrosamine yields. Monochloramine significantly enhanced nitrosamine formation from four pharmaceuticals. NDMA formation by adding hypochlorous acid and ammonium separately were lower than those during monochloramination. During two-step chlorination, NDMA formation was enhanced at certain pre-chlorine doses (e.g., a Cl/N molar ratio of 20 or 4). The pre-chlorine dose changed the Cl/N ratio. As the ratio was increased, the combined chlorine residual was formed and decreased. When the ratio was high, breakpoint chlorination possibly occurred enhancing NDMA formation. While NDMA formation was successfully inhibited by two-step chlorination, ammonium brought the NDMA yields of these pharmaceuticals back to the range observed in chloramination, suggesting the importance of ammonium control for limiting NDMA formation from pharmaceuticals during two-step chlorination.
Assuntos
Nitrosaminas , Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Aminas , Cloraminas , Dimetilnitrosamina , Desinfecção , Halogenação , Nitrogênio , Poluentes Químicos da Água/análiseRESUMO
The aim of this study was to evaluate the effect of the addition of organic compost in combination with the inorganic nitrogen fertigation on growth, phytochemical accumulation, and antioxidant activity of spinach (Spinacia oleracea L. cv. Manatee). Soil blocked spinach seedlings (six seedlings per block), three blocks per pot (316 plants m-2) were transplanted after 18 days after emergence into to 12 L pots. The treatments were: unfertilized soil, organic compost, organic compost +75 kg of N ha-1, applied as ammonium sulfate; and organic compost +75 kg N ha-1, applied as ammonium nitrate. The addition of organic compost to unfertilized soil increased the fresh yield. The application of inorganic N from the two sources in relation to organic compost treatment increased spinach fresh yield from 2.3 to 4.81 kg m-2 and shoot dry weight from 0.60 to 1,31 g plant-1. Levels of carotenoids also increased with inorganic N addition, producing higher values in plants grown with organic compost + ammonium nitrate (31.14 mg/100 g fresh weight). However, the addition of N led to a decrease in leaf-blade total phenols from 75 to 56 mg gallic acid equivalents/100mg fresh weight. The addition of inorganic N led to a dramatic decrease in leaf-blade ferric reducing antioxidant activity. This effect was higher with ammonium sulfate application. The application of organic compost and inorganic nitrogen had no influence on the petiole's phytochemical accumulation and antioxidant activity.
RESUMO
Agricultural nonpoint pollution has been recognized as the main source of aquatic contaminants worldwide, such as inorganic nitrogen (ION) and heavy metals (HMs). It is an important challenge to simultaneously and efficiently immobilize soil ION and HMs in farmland. Herein, we present a polyporous Mg/Fe-layered double hydroxide and biochar composite (Mg/Fe-LDH@biochar) with the efficient coadsorption capacity of ION and HMs for the mitigation of agricultural nonpoint pollution toward aquatic systems. The Mg/Fe-LDH@biochar showed strong adsorption toward ION (i.e., NH4+-N and NO3--N) and HMs (i.e., Cu, Zn, Ni, Pb, and Cd), with maximum capacity of 98.53 mg of NH4+-N/g, 27.09 mg of NO3--N/g, 295.80 of mg Cu/g, 141.70 mg of Zn/g, 75.59 mg of Ni/g, 1264.10 mg of Pb/g, and 126.30 mg of Cd/g, respectively. More attractively, by deionized water extraction, the adsorbed ION on the composite was more easily rereleased, with a desorption percentage of about 42.33 ± 6.87% NO3--N and 1.42 ± 0.78% NH4+-N, than that of HMs (<1.0%). This difference is primarily related with the strength of bonding forces of ION and HMs when adsorbed on Mg/Fe-LDH@biochar, in the sequence of NO3--N (van der Waals force and electrostatic attraction) < NH4+-N (hydrogen bonding) < HMs (ionic/coordinate bonding). Finally, to examine the performance of Mg/Fe-LDH@biochar for practical applications in farmland, column leaching experiments were successfully conducted by stimulated rainfall events. The addition of Mg/Fe-LDH@biochar into soils could greatly reduce the leaching of ION and HMs simultaneously, with reduction ratios of >60, >40, and >90% for NH4+-N, NO3--N, and HMs, respectively, at 3.0% addition. Moreover, there was no leaching risk of Fe ions into the water body from Mg/Fe-LDH@biochar-amended soils.
RESUMO
Permafrost thaw could lead to frozen carbon (C) being laterally transferred to aquatic systems as dissolved organic carbon (DOC). If this part of DOC has high biodegradability, it could be decomposed during the delivery process, release greenhouse gases to the atmosphere and trigger positive C-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and ultraviolet (UV) light exposure. Especially on the Tibetan Plateau, where thermokarst develops widely and suffers from serious UV radiation and N limitation. However, it remains unclear how thermokarst-impacted biodegradable DOC (BDOC) responds to inorganic N addition and UV radiation. Here, we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV amendments in a typical thermokarst on the Tibetan Plateau, by using laboratory incubations with spectral analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst outflows was significantly higher than in reference water. Our results also revealed that inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV radiation did not generate additive effects on BDOC. Our results further illustrated that dissolved organic matter (DOM) composition explained more of the variability in BDOC, while the nutrients and other physicochemical properties played a minor role. Overall, these results imply that UV light rather than inorganic N significantly increases thermokarst-derived BDOC, potentially strengthening the positive permafrost C-climate feedback.
Assuntos
Biodegradação Ambiental , Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Pergelissolo/química , Raios Ultravioleta , TibetRESUMO
It has been shown that different nitrogen (N) addition led to various influences on soil microbial activities in forest ecosystems; however, the changes of bacteria were still unclear. In this work, inorganic N (NH4NO3) and organic N (urea and glycine) were fertilized with different ratios (5:0, 1:4, 3:2, 2:3, and 1:4) on temperate forest soils, while fungicide (cycloheximide) was simultaneously added on half of each treatment to inhibit fungal activities (leaving only bacteria). After a 3-year field experiment, soil samples were harvested, then microbial enzymatic activities involved in carbon (C), and N and phosphorus (P) cycles were determined. Under laboratory conditions, four purified bacteria which were isolated from sample site had been inoculated in sterilized soils under different N types and enzymatic activities were assayed after 90-day incubation. The results showed that cellulase and polyphenol oxidase activities of non-fungicide-added treatments increased after N addition and greater organic N accelerated the increases. However, these enzymatic activities of fungicide-added treatments were not significantly influenced by N addition and N types. It may be due to the insufficient ability of bacteria to synthesize enough enzymes to decompose complex organic C (such as cellulose and lignin) into available compound, although N-limitation was alleviated. Alkaline phosphatase activities increased after N addition in both non-fungicide-added and fungicide-added treatments, and the acceleration on bacterial alkaline phosphatase activities was even greater. Furthermore, organic N showed at least 2.5 times promotion on bacteria alkaline phosphatase than those of inorganic N, which indicated greater alleviation of bacterial P-limitation after the addition of organic N. All the results indicated that soil bacteria may be seriously limited by soil available C but become the dominant decomposer of the complex P compounds after N addition, particularly greater organic N.
Assuntos
Bactérias/metabolismo , Nitrogênio/análise , Microbiologia do Solo , Solo , Bactérias/química , Carbono/análise , Carbono/metabolismo , Florestas , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismoRESUMO
Nitrogen (N) deposition significantly affects soil microbial activities and litter decomposition processes in forest ecosystems. However, the changes in soil fungi during litter decomposition remain unclear. In this study, ammonium nitrate was selected as inorganic N (IN), whereas urea and glycine were selected as organic N (ON). N fertilizer with different IN-to-ON ratios (1:4, 2:3, 3:2, 4:1, and 5:0) was mixed in equal amounts and then added to temperate forest soils. Half of each treatment was simultaneously added with streptomycin to inhibit soil bacteria. The activities of enzymes involved in litter decomposition (invertase, ß-glucosidase, cellulase, polyphenol oxidase, and phosphatase) were assayed after a three-year field experiment. The results showed that enzymatic activities were inhibited by IN addition but accelerated by ON addition in the non-antibiotic addition treatments. An increase in ON in the mixed N fertilizer also shifted enzymatic activities from N inhibition to N stimulation. Similarly, in the antibiotic addition treatments, fungal activities revealed the same trends, but they were seriously inhibited by IN and significantly accelerated by ON. These results indicated that soil fungi were more sensitive to N deposition, particularly to ON. A large amount of ON may convert soil microbial communities into a fungi-dominated system. However, excessive ON deposition (20% IN+80% ON) caused N saturation and repressed fungal activities. These results suggested that soil fungi were sensitive to N type and that different IN-to-ON ratios may induce diverse ecological effects on soil fungi.