Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Clin Mol Hepatol ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355871

RESUMO

The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, specially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.

2.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408564

RESUMO

Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral/imunologia , Inflamação/patologia , Inflamação/imunologia , Animais , Células Estromais/patologia , Células Estromais/imunologia , Células Estromais/metabolismo
3.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338413

RESUMO

The liver is one of the most common sites for metastasis, which involves the spread from primary tumors to surrounding organs and tissues in the human body. There are a few steps in cancer expansion: invasion, inflammatory processes allowing the hepatic niche to be created, adhesions to ECM, neovascularization, and secretion of enzymes. The spread of tumor cells depends on the microenvironment created by the contribution of many biomolecules, including proteolytic enzymes, cytokines, growth factors, and cell adhesion molecules that enable tumor cells to interact with the microenvironment. Moreover, the microenvironment plays a significant role in tumor growth and expansion. The secreted enzymes help cancer cells facilitate newly formed hepatic niches and promote migration and invasion. Our study discusses pharmacological methods used to prevent liver metastasis by targeting the tumor microenvironment and cancer cell colonization in the liver. We examine randomized studies focusing on median survival duration and median overall survival in patients administered placebo compared with those treated with bevacizumab, ramucirumab, regorafenib, and ziv-aflibercept in addition to current chemotherapy. We also include research on mice and their responses to these medications, which may suppress metastasis progression. Finally, we discuss the significance of non-pharmacological methods, including surgical procedures, radiotherapy, cryotherapy, radiofrequency ablation (RFA), and transarterial embolization (TAE). In conclusion, the given methods can successfully prevent metastases to the liver and prolong the median survival duration and median overall survival in patients suffering from cancer.

4.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273394

RESUMO

Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.


Assuntos
Fígado , Receptores Purinérgicos , Transdução de Sinais , Humanos , Animais , Fígado/metabolismo , Receptores Purinérgicos/metabolismo , Células de Kupffer/metabolismo , Células Estreladas do Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatócitos/metabolismo
5.
Curr Issues Mol Biol ; 46(8): 7997-8014, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39194690

RESUMO

Liver fibrosis is an important step in the transformation of chronic liver disease into cirrhosis and liver cancer, and structural changes and functional disorders of liver sinusoidal endothelial cells (LSECs) are early events in the occurrence of liver fibrosis. Therefore, it is necessary to identify the key regulatory genes of endothelial dysfunction in the process of liver fibrosis to provide a reference for the diagnosis and treatment of liver fibrosis. In this study, we identified 230 common differentially expressed genes (Co-DEGs) by analyzing transcriptomic data of primary LSECs from three different liver fibrosis mouse models (carbon tetrachloride; choline-deficient, l-amino acid-defined diet; and nonalcoholic steatohepatitis). Enrichment analysis revealed that the Co-DEGs were mainly involved in regulating the inflammatory response, immune response, angiogenesis, formation and degradation of the extracellular matrix, and mediating chemokine-related pathways. A Venn diagram analysis was used to identify 17 key genes related to the progression of liver cirrhosis. Regression analysis using the Lasso-Cox method identified genes related to prognosis among these key genes: SOX4, LGALS3, SERPINE2, CD52, and LPXN. In mouse models of liver fibrosis (bile duct ligation and carbon tetrachloride), all five key genes were upregulated in fibrotic livers. This study identified key regulatory genes for endothelial dysfunction in liver fibrosis, namely SOX4, LGALS3, SERPINE2, CD52, and LPXN, which will provide new targets for the development of therapeutic strategies targeting endothelial dysfunction in LSECs and liver fibrosis.

6.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063116

RESUMO

The burden of chronic liver disease is globally increasing at an alarming rate. Chronic liver injury leads to liver inflammation and fibrosis (LF) as critical determinants of long-term outcomes such as cirrhosis, liver cancer, and mortality. LF is a wound-healing process characterized by excessive deposition of extracellular matrix (ECM) proteins due to the activation of hepatic stellate cells (HSCs). In the healthy liver, quiescent HSCs metabolize and store retinoids. Upon fibrogenic activation, quiescent HSCs transdifferentiate into myofibroblasts; lose their vitamin A; upregulate α-smooth muscle actin; and produce proinflammatory soluble mediators, collagens, and inhibitors of ECM degradation. Activated HSCs are the main effector cells during hepatic fibrogenesis. In addition, the accumulation and activation of profibrogenic macrophages in response to hepatocyte death play a critical role in the initiation of HSC activation and survival. The main source of myofibroblasts is resident HSCs. Activated HSCs migrate to the site of active fibrogenesis to initiate the formation of a fibrous scar. Single-cell technologies revealed that quiescent HSCs are highly homogenous, while activated HSCs/myofibroblasts are much more heterogeneous. The complex process of inflammation results from the response of various hepatic cells to hepatocellular death and inflammatory signals related to intrahepatic injury pathways or extrahepatic mediators. Inflammatory processes modulate fibrogenesis by activating HSCs and, in turn, drive immune mechanisms via cytokines and chemokines. Increasing evidence also suggests that cellular stress responses contribute to fibrogenesis. Recent data demonstrated that LF can revert even at advanced stages of cirrhosis if the underlying cause is eliminated, which inhibits the inflammatory and profibrogenic cells. However, despite numerous clinical studies on plausible drug candidates, an approved antifibrotic therapy still remains elusive. This state-of-the-art review presents cellular and molecular mechanisms involved in hepatic fibrogenesis and its resolution, as well as comprehensively discusses the drivers linking liver injury to chronic liver inflammation and LF.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Animais , Miofibroblastos/metabolismo , Miofibroblastos/patologia
7.
Front Cell Dev Biol ; 12: 1359451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694823

RESUMO

Immunotherapy has changed the landscape of treatment options for patients with hepatocellular cancer. Checkpoint inhibitors are now standard of care for patients with advanced tumours, yet the majority remain resistant to this therapy and urgent approaches are needed to boost the efficacy of these agents. Targeting the liver endothelial cells, as the orchestrators of immune cell recruitment, within the tumour microenvironment of this highly vascular cancer could potentially boost immune cell infiltration. We demonstrate the successful culture of primary human liver endothelial cells in organ-on-a-chip technology followed by perfusion of peripheral blood mononuclear cells. We confirm, with confocal and multiphoton imaging, the capture and adhesion of immune cells in response to pro-inflammatory cytokines in this model. This multicellular platform sets the foundation for testing the efficacy of new therapies in promoting leukocyte infiltration across liver endothelium as well as a model for testing cell therapy, such as chimeric antigen receptor (CAR)-T cell, capture and migration across human liver endothelium.

8.
JHEP Rep ; 6(5): 101023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38681862

RESUMO

Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.

9.
Cell Biochem Funct ; 42(2): e3969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459746

RESUMO

The research of liver metastasis is a developing field. The ability of tumor cells to invade the liver depends on the complicated interactions between metastatic cells and local subpopulations in the liver (including Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells, and immune-related cells). These interactions are mainly mediated by intercellular adhesion and the release of cytokines. Cell populations in the liver microenvironment can play a dual role in the progression of liver metastasis through different mechanisms. At the same time, we can see the participation of liver parenchymal cells and nonparenchymal cells in the process of liver metastasis of different tumors. Therefore, the purpose of this article is to summarize the relationship between cellular components of liver microenvironment and metastasis and emphasize the importance of different cells in the occurrence or potential regression of liver metastasis.


Assuntos
Células Endoteliais , Neoplasias Hepáticas , Humanos , Células Endoteliais/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Células de Kupffer , Hepatócitos , Microambiente Tumoral
10.
Mol Med Rep ; 29(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426545

RESUMO

Liver sinusoidal endothelial cells (LSECs) have an important role in hepatic ischemia­reperfusion injury (I/R), but the specific molecular mechanism of action is unknown. LSEC proliferation is regulated and fenestration is maintained via the Sentrin/SUMO­specific protease 1 (SENP1)/hypoxia­inducible factor­1α (HIF­1α) signaling axis under hypoxic conditions. In the present study, a hypoxia­reoxygenation (H­R) injury model was established using mouse LSECs to explore the relationship between SENP1 and H­R injury in vitro, and the specific underlying mechanism was identified, revealing new targets for the clinical attenuation of hepatic I/R injury. Following the culture of LSECs under H­R conditions, it was demonstrated that the expression of SENP1 was upregulated by reverse transcription­quantitative polymerase chain reaction and western blotting (WB). In addition, scanning electron microscopy indicated that fenestrae damage was increased, a Cell Counting Kit­8 assay demonstrated that the proliferation of cells was impaired and flow cytometry showed that apoptosis was increased. After silencing SENP1 expression with short interfering RNA, the proliferation activity of LSECs decreased, the fenestrae damage increased, the apoptosis rate increased and the expression levels of SENP1, HIF­1α, heme oxygenase and Bcl­2 were downregulated (as demonstrated by WB), while the expression levels of apoptosis­related proteins, cleaved­caspase­3 and Bax, were upregulated. Enzyme­linked immunosorbent assay detection showed that the level of vascular endothelial growth factor in the supernatant decreased and the level of IL­6 and TNF­α increased. Following the administration of an HIF­1α signaling pathway agonist, the situation was reversed. These results therefore suggested that SENP1 attenuated the reduction in proliferation, apoptosis and fenestration of LSECs observed following H­R injury through the HIF­1α signaling pathway. In conclusion, SENP1 may attenuate H­R injury in LSECs in a HIF­1α signaling pathway­dependent manner.


Assuntos
Células Endoteliais , Peptídeo Hidrolases , Animais , Camundongos , Capilares/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Gastroenterol Hepatol ; 39(7): 1413-1421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348885

RESUMO

BACKGROUND AND AIM: Safe radical hepatectomy is important for patients with colorectal liver metastases complicated by sinusoidal obstruction syndrome (SOS) after oxaliplatin-based chemotherapy. This study aimed to investigate the impact of preoperative administration of cilostazol (CZ), an oral selective phosphodiesterase III inhibitor, on hepatectomy in rat SOS model. MATERIAL AND METHODS: Rats were divided into NL (normal liver), SOS (monocrotaline [MCT]-treated), and SOS + CZ (MCT + CZ-treated) groups. MCT or CZ was administered orally, and a 30% partial hepatectomy was performed 48 h after MCT administration. Postoperative survival rates were evaluated (n = 9, for each). Other rats were sacrificed on postoperative days (POD) 1 and 3 and evaluated histologically, immunohistochemically, biochemically, and using transmission electron microscopy (TEM), focusing particularly on SOS findings, liver damage, and liver sinusoidal endothelial cell (LSEC) injury. RESULTS: The cumulative 10-day postoperative survival rate was significantly higher in the SOS + CZ group than in the SOS group (88.9% vs 33.3%, P = 0.001). Total SOS scores were significantly lower in the SOS + CZ group than in the SOS group on both POD 1 and 3. Serum biochemistry and immunohistochemistry showed that CZ reduced liver damage after hepatectomy. TEM revealed that LSECs were significantly preserved morphologically in the SOS + CZ group than in the SOS group on POD 1 (86.1 ± 8.2% vs 63.8 ± 9.3%, P = 0.003). CONCLUSION: Preoperative CZ administration reduced liver injury by protecting LSECs and improved the prognosis after hepatectomy in rats with SOS.


Assuntos
Cilostazol , Modelos Animais de Doenças , Hepatectomia , Hepatopatia Veno-Oclusiva , Inibidores da Fosfodiesterase 3 , Animais , Hepatopatia Veno-Oclusiva/prevenção & controle , Hepatopatia Veno-Oclusiva/etiologia , Hepatopatia Veno-Oclusiva/patologia , Cilostazol/farmacologia , Hepatectomia/efeitos adversos , Masculino , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 3/uso terapêutico , Prognóstico , Oxaliplatina/efeitos adversos , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Taxa de Sobrevida , Ratos , Tetrazóis/administração & dosagem , Tetrazóis/farmacologia , Neoplasias Colorretais/patologia , Fígado/patologia , Ratos Sprague-Dawley
12.
Int J Biol Sci ; 20(2): 606-620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169654

RESUMO

Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor ß-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.


Assuntos
Hepatopatias Alcoólicas , Óxido Nítrico , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Óxido Nítrico/metabolismo
13.
Toxics ; 11(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999580

RESUMO

Arsenic pollution is a global environmental concern. Arsenic-induced chronic liver injury and its irreversible outcomes, including liver cirrhosis and liver cancer, threaten the health of residents in arsenic-contaminated areas. Liver fibrosis is a reversible pathological stage in the progression of arsenic-induced chronic liver injury to cirrhosis and liver cancer. The aim of this study is to identify the epigenetic mechanism of arsenic-induced liver fibrosis based on the dedifferentiation of liver sinusoidal endothelial cells (LSECs). Rats were treated with 0.0, 2.5, 5.0, or 10.0 mg/kg sodium arsenite for 36 weeks. Marked fibrotic phenotypes were observed in the rat livers, manifested by hepatic stellate cell activation and an increased extracellular matrix, as well as the deposition of collagen fibers. The reduced fenestrations on the cells' surface and the increased expression of the dedifferentiation marker CD31 corroborated the LSECs' dedifferentiation in the liver tissue, which was also found to be significantly associated with fibrotic phenotypes. We further revealed that arsenic exposure could inhibit the enrichment of histone H3 lysine 18 acetylation (H3K18ac) in the promoters of Fcgr2b and Lyve1, two key genes responsible for maintaining the differentiation phenotype of LSECs. This inhibition subsequently suppressed the genes' expression, promoting LSEC dedifferentiation and subsequent liver fibrosis. In conclusion, arsenic can trigger liver fibrosis by inhibiting H3K18ac-dependent maintenance of LSEC differentiation. These findings uncover a novel mechanism of arsenic-induced liver fibrosis based on a new insight into epigenetically dependent LSEC dedifferentiation.

14.
Regen Ther ; 24: 274-281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575681

RESUMO

Introduction: Liver sinusoidal endothelial cells (LSECs) are specialized vascular endothelial cells that play an important role in the maintenance of biological homeostasis. However, the lack of versatile human LSECs has hindered research on LSECs and development of medical technologies for liver diseases including hemophilia A. In this study, we developed a technique to induce LSEC differentiation from human bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods: To induce LSECs from human BM-MSCs, cytokines and chemical compounds associated with signaling implicated in LSEC differentiation and liver development were screened. Then LSEC-related genes and proteins expression in the differentiated cells were analyzed by qPCR and flow cytometry analysis, respectively. LSEC-related functions of the differentiated cells were also examined. Results: We found that the gene expression of LSEC markers, such as LYVE1, was considerably increased by culturing human BM-MSCs with bone morphogenetic protein 4, fibroblast growth factor 8b, transforming growth factor-ß signal inhibitor, and cyclic AMP. Furthermore, the differentiated cells expressed LSEC marker proteins and clearly demonstrated LSEC-specific functions, such as the uptake of hyaluronic acid. Conclusions: Our result indicate that the functional LSEC-like cells were successfully generated from human BM-MSCs using our established protocol.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 469-474, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248570

RESUMO

Metastasis, a main cause of death in tumor patients, is a complicated process that involves multiple steps, presenting a major clinical challenge. Tumor cells break the physical boundaries of a primary tumor, intravasate into the lumina of blood vessels, travel around through blood circulation, extravasate into distant organs, colonize the host organs, and eventually develop into the foci of metastatic cancer. The metastasis of tumor cells exhibits organ-tropism, i.e., tumor cells preferentially spread to specific organs. Liver is a common site for metastasis. The pattern of metastasis in uveal melanoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma shows organ-tropism for liver. The anatomical structure of liver determines its hemodynamic characteristics, e.g., low pressure and slow blood flow, which tend to facilitate the stasis and colonization of tumor cells in the liver. Besides the hemodynamic features, the metastatic colonization of liver depends largely on the interaction between tumor cells and the hepatic microenvironment (especially liver-resident cellular components). Resident cells of the hepatic microenvironment include hepatocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KCs), etc. Herein, we discussed the role and significance of liver-resident cells in the metastatic colonization of tumor in the liver.


Assuntos
Células Endoteliais , Neoplasias Hepáticas , Humanos , Fígado/patologia , Hepatócitos , Células de Kupffer/patologia , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral/fisiologia
16.
JHEP Rep ; 5(4): 100684, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879887

RESUMO

Background & Aims: Progression of alcohol-associated liver disease (ALD) is driven by genetic predisposition. The rs13702 variant in the lipoprotein lipase (LPL) gene is linked to non-alcoholic fatty liver disease. We aimed at clarifying its role in ALD. Methods: Patients with alcohol-associated cirrhosis, with (n = 385) and without hepatocellular carcinoma (HCC) (n = 656), with HCC attributable to viral hepatitis C (n = 280), controls with alcohol abuse without liver damage (n = 366), and healthy controls (n = 277) were genotyped regarding the LPL rs13702 polymorphism. Furthermore, the UK Biobank cohort was analysed. LPL expression was investigated in human liver specimens and in liver cell lines. Results: Frequency of the LPL rs13702 CC genotype was lower in ALD with HCC in comparison to ALD without HCC both in the initial (3.9% vs. 9.3%) and the validation cohort (4.7% vs. 9.5%; p <0.05 each) and compared with patients with viral HCC (11.4%), alcohol misuse without cirrhosis (8.7%), or healthy controls (9.0%). This protective effect (odds ratio [OR] = 0.5) was confirmed in multivariate analysis including age (OR = 1.1/year), male sex (OR = 3.0), diabetes (OR = 1.8), and carriage of the PNPLA3 I148M risk variant (OR = 2.0). In the UK Biobank cohort, the LPL rs13702 C allele was replicated as a risk factor for HCC. Liver expression of LPL mRNA was dependent on LPL rs13702 genotype and significantly higher in patients with ALD cirrhosis compared with controls and alcohol-associated HCC. Although hepatocyte cell lines showed negligible LPL protein expression, hepatic stellate cells and liver sinusoidal endothelial cells expressed LPL. Conclusions: LPL is upregulated in the liver of patients with alcohol-associated cirrhosis. The LPL rs13702 high producer variant confers protection against HCC in ALD, which might help to stratify people for HCC risk. Impact and implications: Hepatocellular carcinoma is a severe complication of liver cirrhosis influenced by genetic predisposition. We found that a genetic variant in the gene encoding lipoprotein lipase reduces the risk for hepatocellular carcinoma in alcohol-associated cirrhosis. This genetic variation may directly affect the liver, because, unlike in healthy adult liver, lipoprotein lipase is produced from liver cells in alcohol-associated cirrhosis.

17.
J Ethnopharmacol ; 308: 116191, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36731809

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dahuang Zhechong pill (DHZCP), a traditional Chinese medicine, was derived from the famous book Unk "Synopsis of Prescriptions of the Golden Chamber" during the Han dynasty. Owing to its ability to invigorate the circulation of blood in Chinese medicine, DHZCP is usually used for treating liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Clinical application have shown that DHZCP exhibits satisfactory therapeutic effects in HCC adjuvant therapy; however, little is known about its underlying mechanisms. AIM OF THE STUDY: We aimed to clarify the mechanism of DHZCP against hepatic sinusoidal capillarization in rats with LC and HCC by inhibiting the MK/integrin signaling pathway of liver sinusoidal endothelial cells (LSECs). MATERIALS AND METHODS: The contents of 29 characteristic components in DHZCP were determined by ultraperformance liquid chromatography-tandem mass spectrometry. DEN (Diethylnitrosamine)-induced LC and HCC rat models were constructed, and DHZCP was administered when the disease entered the LC stage. After 4 or 12 weeks of administration, hematoxylin and eosin staining, Masson staining, Metavir score, and SSCP (Single strand conformation polymorphism) gene mutation detection were used to confirm tissue fibrosis and cancer. The levels of NO, ET-1 and TXA2, which can regulate vasomotor functions and activate the MK/Itgα6/Src signaling pathway were evaluated by using immunohistochemistry, chemiluminescence, immunofluorescence, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA). Similar methods were also used to evaluate the levels of VEGF, VEGFR, Ang-2 and Tie, which can promote pathological angiogenesis and activate the MK/Itgα4/NF-κB signaling pathway. In vitro cell experiments were performed using potential pharmacodynamic molecules targeting integrins in DHZCP were selected by molecular docking, and the effects of these molecules on the function of LSECs were studied by Itgα4+ and Itgα6+ cell models. RESULTS: At the stage of LC, the animal experiments demonstrated that DHZCP mainly inhibited the MK/Itgα6 signaling pathway to increase the number and size of hepatic sinus fenestration, reversed the ET-1/NO and TXA2/NO ratios, regulated hepatic sinus relaxation and contraction balance, reduced the portal vein pressure, and inhibited cirrhotic carcinogenesis. At the HCC stage, DHZCP could also significantly inhibit the MK/Itgα4 signaling pathway, reduce pathological angiogenesis, and alleviate disease progression. The results of the cell experiments showed that Rhein, Naringenin, Liquiritin and Emodin-8-O-ß-D-glucoside (PMEG) were involved in vascular regulation by affecting the MK/integrin signaling pathway. Liquiritin and PMEG mainly blocked the MK/α6 signal, which is important in regulating the vasomotor function of the liver sinus. Naringenin and Rhein mainly acted by blocked the signaling of MK/α4 action signal, which are potent molecules that inhibit pathological angiogenesis. CONCLUSIONS: DHZCP could improve the hepatic sinusoidal capillarization of LC and HCC by inhibiting the MK/Itgα signaling pathway and inhibited disease progression. Rhein, Naringenin, Liquiritin and PMEG were the main active molecules that affected the MK/Itgα signaling pathway.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Cadeias alfa de Integrinas , Cirrose Hepática , Neoplasias Hepáticas , Neovascularização Patológica , Animais , Ratos , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Progressão da Doença , Células Endoteliais/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Capilares/efeitos dos fármacos , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo
18.
Cancers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831649

RESUMO

Hepatocellular carcinoma (HCC) in the setting of non-alcoholic fatty liver disease (NAFLD)-related cirrhosis and even in the pre-cirrhotic state is increasing in incidence. NAFLD-related HCC has a poor clinical outcome as it is often advanced at diagnosis due to late diagnosis and systemic treatment response is poor due to reduced immune surveillance. Much of the focus of molecular research has been on the pathological changes in hepatocytes; however, immune cells, hepatic stellate cells, liver sinusoidal endothelial cells and the extracellular matrix may play important roles in the pathogenesis of NAFLD-related HCC as well. Here, we review the role of non-parenchymal cells in the liver in the pathogenesis of HCC in the context of NAFLD-NASH, with a particular focus on the innate and the adaptive immune system, fibrogenesis and angiogenesis. We review the key roles of macrophages, hepatic stellate cells (HSCs), T cells, natural killer (NK) cells, NKT cells and liver sinusoidal endothelial cells (LSECs) and the role of the extracellular matrix in hepatocarcinogenesis within the steatotic milieu.

19.
JHEP Rep ; 5(2): 100628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687470

RESUMO

Background & Aims: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods: Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion: Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications: Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.

20.
Chin J Integr Med ; 29(4): 316-324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34816365

RESUMO

OBJECTIVE: To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro. METHODS: Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor ß (TGF-ß)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-ß1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed. RESULTS: High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFß R1, TGFß R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01). CONCLUSIONS: Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-ß/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.


Assuntos
Amigdalina , Fator de Crescimento Transformador beta , Ratos , Masculino , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Células Endoteliais/metabolismo , Azeite de Oliva/metabolismo , Azeite de Oliva/farmacologia , Azeite de Oliva/uso terapêutico , Ratos Wistar , Proteínas Smad/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais , Colágeno Tipo I/metabolismo , Tetracloreto de Carbono , Células Estreladas do Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA