Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 51(6): e13858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636940

RESUMO

Intracerebral haemorrhage (ICH) presents significant challenges in clinical management because of the high morbidity and mortality, necessitating novel therapeutic approaches. This study aimed to assess the neuroprotective effects of loganin in a rat ICH model. Sprague-Dawley rats were used, subjected to a collagenase-induced ICH model, followed by loganin treatment at doses of 2.5, 5 and 10 mg/kg. Neurological functions were evaluated using the modified neurological severity score (mNSS) and a rotarod test. Results indicated a significant improvement in neurological functions in loganin-treated groups, evident from the mNSS and rotarod tests, suggesting dose-dependent neuroprotection. Loganin also effectively reduced the blood-brain barrier (BBB) permeability and cerebral oedema. Additionally, it mitigated cellular pyroptosis, as shown by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining and western blot analysis, which indicated reduced levels of pyroptosis markers in treated rats. Furthermore, loganin's regulatory effects on the adenosine A2A receptor and myosin light chain kinase pathways were observed, potentially underpinning its protective mechanism against ICH. The study concludes that loganin exhibits significant neuroprotective properties in a rat ICH model, highlighting its potential as a novel therapeutic strategy. Despite promising results, the study needs further research to determine loganin's therapeutic potential in human ICH patients. This research paves the way for further exploration into loganin's clinical applications, potentially revolutionizing treatment strategies for patients suffering from intracerebral haemorrhage.


Assuntos
Iridoides , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Piroptose , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente
2.
Chem Biol Interact ; 382: 110640, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473909

RESUMO

Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The purpose of this study was to investigate the protective effect of loganin on diabetic nephropathy in vivo and in vitro and whether this effect was related to the inhibition of pyroptosis. The results indicated that loganin reduced fasting blood glucose, blood urea nitrogen and serum creatinine concentrations, and alleviated renal pathological changes in DKD mice. In parallel, loganin downregulated the expression of pyroptosis related proteins in the renal tubules of DKD mice and decreased serum levels of interleukin-1beta (IL-1ß) and interleukin-18 (IL-18). Furthermore, in vitro experiments showed that loganin attenuated high glucose-induced HK-2 cell injury by reducing the expression of pyroptosis-related proteins, and cytokine levels were also decreased. These fundings were also confirmed in the polyphyllin VI (PPVI) -induced HK-2 cell pyroptosis model. Loganin reduces high glucose induced HK-2 cells pyroptosis by inhibiting reactive oxygen species (ROS) production and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, the inhibition of pyroptosis via inhibition of the NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway might be an essential mechanism for loganin treatment of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Proteínas NLR , Nefropatias Diabéticas/tratamento farmacológico , Rim/metabolismo , Glucose/farmacologia
3.
J Ethnopharmacol ; 312: 116455, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37019163

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corni Fructus is a traditional Chinese herb and widely applied for treatment of age-related disorders in China. Iridoid glycoside was considered as the active ingredient of Corni Fructus. Loganin is one of the major iridoid glycosides and quality control components of Corni Fructus. Emerging evidence emphasized the beneficial effect of loganin on neurodegenerative disorders, such as Alzheimer's disease (AD). However, the detailed mechanism underlying the neuroprotective action of loganin remains to be unraveled. AIM OF THE STUDY: To explore the improvement of loganin on cognitive impairment in 3 × Tg-AD mice and reveal the potential mechanism. MATERIALS AND METHODS: Eight-month 3 × Tg-AD male mice were intraperitoneally injected with loganin (20 and 40 mg/kg) for consecutive 21 days. Behavioral tests were used to evaluated the cognition-enhancing effects of loganin, and Nissl staining and thioflavine S staining were performed to analyze neuronal survival and Aß pathology. Western blot analysis, transmission electron microscopy and immunofluorescence were utilized to explore the molecular mechanism of loganin in AD mice involved mitochondrial dynamics and mitophagy. Aß25-35-induced SH-SY5Y cells were applied to verify the potential mechanism in vitro. RESULTS: Loganin significantly mitigated the learning and memory deficit and amyloid ß-protein (Aß) deposition, and recovered synaptic ultrastructure in 3 × Tg-AD mice. Perturbed mitochondrial dynamics characterized by excessive fission and insufficient fusion were restored after loganin treatment. Meanwhile, loganin reversed the increase of mitophagy markers (LC3II, p62, PINK1 and Parkin) and mitochondrial markers (TOM20 and COXIV) in hippocampus of AD mice, and enhanced the location of optineurin (OPTN, a well-known mitophagy receptor) to mitochondria. Accumulated PINK1, Parkin, p62 and LC3II were also revealed in Aß25-35-induced SH-SY5Y cells, which were ameliorated by loganin. Increased OPTN in Aß25-35-treated SH-SY5Y cells was further upregulated by loganin incubation, along with the reduction of mitochondrial ROSand elevation ofmitochondrial membrane potential (MMP). Conversely, OPTN silence neutralized the effect of loganin on mitophagy and mitochondrial function, which is consistent with the finding that loganin presented strong affinity with OPTN measured by molecular docking in silico. CONCLUSIONS: Our observations confirmed that loganin enhanced cognitive function and alleviated AD pathology probably by promoting OPTN-mediated mitophagy,. Loganin might be a potential drug candidate for AD therapy via targeting mitophagy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroblastoma , Camundongos , Humanos , Masculino , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Mitofagia , Peptídeos beta-Amiloides , Simulação de Acoplamento Molecular , Iridoides/farmacologia , Iridoides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Proteínas Quinases , Ubiquitina-Proteína Ligases
4.
Genes Genomics ; 45(3): 271-284, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36018494

RESUMO

BACKGROUND: Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES: This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS: The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS: The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION: The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio , Heme Oxigenase-1/metabolismo , Linhagem Celular , Estresse Oxidativo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia
5.
J Int Med Res ; 50(8): 3000605221104764, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36000146

RESUMO

OBJECTIVE: Inflammation plays a crucial part in osteoarthritis (OA) development. This work aimed to explore loganin's role and molecular mechanism in inflammation and clarify its anti-inflammatory effects in OA treatment. METHODS: Chondrocytes were stimulated using interleukin (IL)-1ß and loganin at two concentrations (1 µM and 10 µM). Nitric oxide (NO) and prostaglandin E2 (PGE2) expression was assessed. Real-time polymerase chain reaction was used to evaluate inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-6, and tumor necrosis factor (TNF)-α mRNA levels. Western blot was used to investigate TLR4, MyD88, p-p65, and IκB-α expression. p65 nuclear translocation, synovial inflammatory response, and cartilage degeneration were also assessed. RESULTS: Loganin significantly reduced IL-1ß-mediated PGE2, NO, iNOS, and COX-2 expression compared with that of the IL-1ß stimulation group. The TLR4/MyD88/NF-κB pathway was suppressed by loganin, which decreased inflammatory cytokine (TNF-α and IL-6) levels compared with those of the IL-1ß stimulation group. Loganin inhibited IL-1ß-mediated NF-κB p65 nuclear translocation compared with that of the IL-1ß stimulation group. Loganin partially suppressed cartilage degeneration and the synovial inflammatory response in vivo. CONCLUSION: This work demonstrated that loganin inhibited IL-1ß-mediated inflammation in rat chondrocytes through TLR4/MyD88/NF-κB pathway regulation, thereby reducing rat cartilage degeneration and the synovial inflammatory response.


Assuntos
NF-kappa B , Osteoartrite , Animais , Cartilagem/patologia , Condrócitos/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Dinoprostona , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Iridoides , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Osteoartrite/patologia , Ratos , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Biosci Trends ; 16(4): 291-300, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-35691912

RESUMO

Loganin is a type of iridoid glycosides isolated from Corni fructus and is known to have various pharmacological properties, but studies on its antioxidant activity are still lacking. Therefore, in this study, the preventive effect of loganin on oxidative stress-mediated cellular damage in human keratinocyte HaCaT cells was investigated. Our results show that loganin pretreatment in a non-toxic concentration range significantly improved cell survival in hydrogen peroxide (H2O2)-treated HaCaT cells, which was associated with inhibition of cell cycle arrest at the G2/M phase and induction of apoptosis. H2O2-induced DNA damage and reactive oxygen species (ROS) generation were also greatly reduced in the presence of loganin. Moreover, H2O2 treatment enhanced the cytoplasmic release of cytochrome c, upregulation of the Bax/Bcl-2 ratio and degradation of cleavage of poly (ADP-ribose) polymerase, whereas loganin remarkably suppressed these changes. In addition, loganin obviously attenuated H2O2-induced autophagy while inhibiting the increased accumulation of autophagosome proteins, including as microtubule-associated protein 1 light chain 3-II and Beclin-1, and p62, an autophagy substrate protein, in H2O2-treated cells. In conclusion, our current results suggests that loganin could protect HaCaT keratinocytes from H2O2-induced cellular injury by inhibiting mitochondrial dysfunction, autophagy and apoptosis. This finding indicates the applicability of loganin in the prevention and treatment of skin diseases caused by oxidative damage.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Antioxidantes/farmacologia , Apoptose , Proteína Beclina-1/metabolismo , Citocromos c/metabolismo , Células HaCaT , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Glicosídeos Iridoides/metabolismo , Glicosídeos Iridoides/farmacologia , Iridoides , Queratinócitos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribose/metabolismo , Ribose/farmacologia , Proteína X Associada a bcl-2/metabolismo
7.
Phytother Res ; 36(6): 2272-2299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35583806

RESUMO

Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.


Assuntos
Cornus , Iridoides , Transdução de Sinais , Cornus/química , Humanos , Iridoides/farmacocinética , Iridoides/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia
8.
Phytomedicine ; 99: 154030, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279615

RESUMO

BACKGROUND: Loganin and morroniside are two iridoid glycosides with anti-inflammatory, antioxidant and anti-tumor effects. Whether they have effect on acute lung injury and pulmonary fibrosis are still unknown. PURPOSE: To explore the potential effects of loganin and morroniside against acute lung cancer and pulmonary fibrosis, and the underlying molecular mechanism. STUDY DESIGN AND METHODS: Cell and animal models of acute lung injury were established by the induction of LPS. After intervention with loganin and morroniside, the pathological symptom of lung tissue was assessed, pro-inflammatory factors in cells and lung tissues were detected, NF- κB/STAT3 signaling pathway related proteins were detected by western blotting. Mice pulmonary fibrosis model was induced by bleomycin, pathological symptom was assessed by HE and Masson staining. Fibrosis related indicators were detected by qPCR or western blot. CD4+/CD8+ was detected by flow cytometry. RESULTS: Loganin and morroniside relieved the pathological symptom of lung tissue in acute lung injury, pro-inflammatory factors such as IL-6, IL-1ß, TNF-α mRNA were inhibited. Expression of p-p65 and STAT3 in lung tissues were also downregulated. In addition, loganin and morroniside downregulated the expression of collagen fiber, hydroxyproline and TGF-ß1, collagen I and α-SMA mRNA in lung tissues of pulmonary fibrosis model. This study proved that loganin and morroniside have protective effect on acute lung injury and pulmonary fibrosis, and may provide theoretical basis for the development of new clinical drugs.

9.
Plants (Basel) ; 10(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34834710

RESUMO

Fruits of Cornus mas and Cornus officinalis are representative plant materials traditionally used in Europe and Asia, respectively, in the treatment of diabetes and diabetes-related complications, which are often mediated by pathogenic inflammatory agents. Additionally, due to the fact of mutual infiltration of Asian and European medicines, the differentiation as well as standardization of traditional prescriptions seem to be crucial for ensuring the quality of traditional products. The objective of this study was a comparison of biological activity of extracts from fruits of C. mas and C. officinalis by an assessment of their effect on reactive oxygen species (ROS) generation in human neutrophils as well as cytokines secretion both in neutrophils (tumor necrosis factor α, TNF- α; interleukin 8, IL-8; interleukin 1ß, IL-1ß) and in human colon adenocarcinoma cell line Caco-2 (IL-8). To evaluate the phytochemical differences between the studied extracts as well as to provide a method for standardization procedures, a quantitative analysis of iridoids, such as loganin, sweroside, and loganic acid, found in extracts of Cornus fruits was performed with HPLC-DAD. All standardized extracts significantly inhibited ROS production, whereas the aqueous-alcoholic extracts were particularly active inhibitors of IL-8 secretion by neutrophils. The aqueous-methanolic extract of C. officinalis fruit, decreased IL-8 secretion by neutrophils to 54.64 ± 7.67%, 49.68 ± 6.55%, 50.29 ± 5.87% at concentrations of 5, 50, and 100 µg/mL, respectively, compared to LPS-stimulated control (100%). The aqueous extract of C. officinalis fruit significantly inhibited TNF-α release by neutrophils at concentrations of 50 and 100 µg/mL. On the other hand, the aqueous-ethanolic extract of C. mas fruit showed the propensity to increase TNF-α and IL-1ß secretion. The modulatory activity of the Cornus extracts was noted in the case of secretion of IL-8 in Caco-2 cells. The effect was comparable with dexamethasone. The content of loganin in aqueous and aqueous-methanolic extract of C. officinalis fruit was higher than in the aqueous-ethanolic extract of C. mas fruit, which was characterized by a significant quantity of loganic acid. In conclusion, the immunomodulatory effect observed in vitro may partially confirm the traditional use of Cornus fruits through alleviation of the development of diabetes-derived inflammatory complications. Loganin and loganic acid are significant markers for standardization of C. mas and C. officinalis fruit extracts, respectively.

10.
Cells ; 10(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685668

RESUMO

Loganin is an iridoid glycoside with antioxidant, anti-inflammatory, glucose-lowering activities which may address the pathological mechanisms of painful diabetic neuropathy (PDN) related to inflammation, oxidative stress, and hyperglycemia. This study investigated the underlying mechanisms of action of loganin on PDN. The in vivo model of PDN was established by streptozotocin-nicotinamide (STZ-NA) induction in Sprague Dawley (SD) rats. Subsequently, loganin (5 mg/kg) was administered by daily intraperitoneal injection. High-glucose stimulated human SH-SY5Y cells co-incubated with loganin were used to mimic the in vitro model of PDN. Loganin improved PDN rats' associated pain behaviors (allodynia and hyperalgesia), insulin resistance index (HOMA-IR), and serum levels of superoxide dismutase (SOD), catalase and glutathione. Loganin also reduced pain-associated channel protein CaV3.2 and calcitonin gene-related peptide (CGRP) in the surficial spinal dorsal horn of PDN rats. Loganin inhibited oxidative stress and NF-κB activation and decreased the levels of mRNA and protein of proinflammatory factors IL-1ß and TNF-α. Moreover, loganin attenuated insulin resistance by modulating the JNK-IRS-1 (insulin receptor substrate-1)-Akt-GSK3ß signaling pathway in PDN rats. These results suggested that loganin improved PDN-mediated pain behaviors by inhibiting oxidative stress-provoked inflammation in the spinal cord, resulting in improved neuropathic pain.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Inflamação/tratamento farmacológico , Resistência à Insulina , Iridoides/uso terapêutico , Neuralgia/tratamento farmacológico , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Comportamento Animal , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canais de Cálcio Tipo T/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/complicações , Jejum/sangue , Humanos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Inflamação/sangue , Inflamação/complicações , Mediadores da Inflamação/sangue , Insulina/sangue , Iridoides/química , Iridoides/farmacologia , Masculino , NF-kappa B/metabolismo , Neuralgia/complicações , Neuroglia/metabolismo , Neuroglia/patologia , Niacinamida , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Estreptozocina
11.
Phytomedicine ; 92: 153734, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536822

RESUMO

BACKGROUND: Neuropathic pain has been shown to be modulated by the activation of the chemokine C-X-C motif ligand 12 (CXCL12)/chemokine CXC receptor 4 (CXCR4) dependent nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. Loganin, an iridoid glycoside, was proven to prevent neuropathic pain, but its underlying mechanisms related to NLRP3 activation are still unknown. PURPOSE: This study investigated the underlying mechanisms of loganin's effect on chronic constriction injury (CCI)-induced NLRP3 inflammasome activation in the spinal cord. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham, CCI, sham + loganin, and CCI + loganin. Loganin (5 mg/kg/day) was administered intraperitoneally starting the day after surgery. Paw withdrawal threshold (PWT) and latency (PWL) were assessed before CCI and on days 1, 3, 7 and 14 after CCI. Spinal cords were collected for western blots and immunofluorescence studies. RESULTS: Loganin prevented CCI-attenuated PWT and PWL, suggesting improved mechanical allodynia and thermal hyperalgesia. The expression of CXCL12, CXCR4, thioredoxin-interacting protein (TXNIP), NLRP3 inflammasome (NLRP3, ASC, and caspase-1), IL-1ß, and IL-18 were enhanced on day 7 after CCI, and all were reduced after loganin treatment. Dual immunofluorescence also showed that increased CXCL12, CXCR4, and NLRP3 were colocalized with NeuN (neuronal marker), GFAP (astrocyte marker), and Iba1 (microglial marker) on day 7 in the ipsilateral spinal dorsal horn (SDH). These immunoreactivities were attenuated in loganin-treated rats. Moreover, loganin decreased the assembly of NLRP3/ASC inflammasome after CCI in the ipsilateral SDH. Loganin appears to attenuate CCI-induced neuropathic pain by suppressing CXCL12/CXCR4-mediated NLRP3 inflammasome. CONCLUSION: Our findings suggest that loganin might be a suitable candidate for managing CCI-provoked neuropathic pain.


Assuntos
Inflamassomos , Neuralgia , Animais , Proteínas de Ciclo Celular , Hiperalgesia/tratamento farmacológico , Iridoides , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptores CXCR4 , Receptores de Quimiocinas , Medula Espinal
12.
J Ethnopharmacol ; 281: 114526, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34400264

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Loganin, an iridoid glycoside, is one of the quality control indexes of Cornus officinalis Sieb. et Zucc. Increasing evidence emphasize the important role of inflammation in the pathology of depression, which links depression with other chronic diseases. Loganin prevents inflammatory response in multiple diseases and reverses depressive-like behaviors. However, the mechanisms underlying antidepressant-like effects of loganin for the treatment of inflammation-associated depression are not utterly understood. AIM OF THE STUDY: The present study was designed to predict the potential targets of loganin against inflammation-associated depression using a network pharmacology approach. MATERIALS AND METHODS: Pharmmapper and Uniport were used to predict loganin-related targets. Targets of inflammation were identified through GeneCards databases and Online Mendelian Inheritance in Man (OMIM). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to identify the potential mechanism. Finally, qRT-PCR and ELISA were used to confirm the role of loganin on these targets. RESULTS: There were 15 nodes in the loganin-inflammation-depression intersection targets network. In the network, the degree value of CTNNB1 was above 3. Among top ten pathways identified by KEGG analysis, Th1/Th2 cell differentiation and IL-17 signaling pathways were related with both inflammation and depression. As indicated by qRT-PCR results, loganin increased CTNNB1 mRNA level. Moreover, loganin elevated M2 markers of microglia but decreased M1 markers of microglia against lipopolysaccharide (LPS), indicated by qRT-PCR results and ELISA results. CONCLUSION: CTNNB1 was the main target of loganin. Loganin alleviated LPS-induced inflammation through inhibiting M1 polarization of microglia. Our results provide a better understanding of loganin-induced antidepressant-like effects for the treatment of inflammation-associated depression.


Assuntos
Antidepressivos/farmacologia , Iridoides/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/genética , Depressão/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Farmacologia em Rede , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Biol Pharm Bull ; 44(6): 875-883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078820

RESUMO

Inflammation caused by the excessive secretion of inflammatory mediators in abnormally activated macrophages promotes many diseases along with oxidative stress. Loganin, a major iridoid glycoside isolated from Cornus officinalis, has recently been reported to exhibit anti-inflammatory and antioxidant effects, whereas the underlying mechanism has not yet been fully clarified. Therefore, the aim of the present study is to investigate the effect of loganin on inflammation and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results indicated that loganin treatment markedly attenuated the LPS-mediated phagocytic activity and release of nitric oxide (NO) and prostaglandin E2, which was associated with decreased the expression of inducible NO synthase and cyclooxygenase-2. In addition, loganin suppressed the expression and their extracellular secretion of LPS-induced pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-1ß. Furthermore, loganin abolished reactive oxygen species (ROS) generation, and promoted the activation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated macrophages. However, zinc protoporphyrin, a selective HO-1 inhibitor, reversed the loganin-mediated suppression of pro-inflammatory cytokines in LPS-treated macrophages. In conclusion, our findings suggest that the upregulation of the Nrf2/HO-1 signaling pathway is concerned at least in the protective effect of loganin against LPS-mediated inflammatory and oxidative stress, and that loganin can be a potential functional agent to prevent inflammatory and oxidative damage.


Assuntos
Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Iridoides/farmacologia , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Int Immunopharmacol ; 95: 107529, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744777

RESUMO

Sepsis is a systemic inflammatory response syndrome resulted from severe infection. Excessive inflammation response plays an important role in sepsis-induced acute lung injury (ALI). Loganin is an iridoid glycoside isolated from Corni fructus and exerts an anti-inflammatory effect in multiple inflammatory diseases; however, the role of loganin in sepsis-induced ALI remains unknown. In the current study, the cecal ligation and puncture (CLP)-induced murine sepsis model was constructed to investigate the anti-inflammatory property of loganin in sepsis-induced ALI. Lipopolysaccharide (LPS)-treated Raw 264.7 cells and primary murine peritoneal macrophages were established to further explore underlying mechanism of loganin. Results showed that intragastrical administration of loganin significantly increased murine survival, reduced the alveolar structure damage and inflammatory cell infiltration. Loganin suppressed the release of the M1 macrophage-associated pro-inflammatory cytokines and induced the activation of M2-type anti-inflammatory cytokines. Besides, loganin dramatically inhibited NLRP3 inflammasome-mediated caspase-1 activation and subsequent IL-1ß secretion. Further in vitro studies confirmed that loganin efficiently inhibited M1 macrophage polarization and NLRP3 inflammasome activation by blocking the extra-cellular signal-regulated kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways. Taken together, the anti-inflammatory effect of loganin in sepsis-induced ALI was associated with the ERK and NF-κB pathway-mediated macrophage polarization and NLRP3 inflammasome activation. Our study offers a favorable mechanistic basis to support the therapeutic potential of loganin in anti-inflammatory diseases, such as sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Inflamassomos/antagonistas & inibidores , Iridoides/uso terapêutico , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Caspase 1/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Iridoides/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Células RAW 264.7 , Sepse/complicações , Sepse/imunologia , Sepse/patologia
15.
Drug Des Devel Ther ; 15: 501-513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603340

RESUMO

PURPOSE: Sepsis, a destructive inflammatory response syndrome, is the principal reason to induce death in the intensive care unit. Loganin has been proved to possess the property of anti-inflammation, antioxidant, neuroprotection, and sedation. The primary aim of this study was to evaluate whether Loganin could alleviate acute kidney injury (AKI) during sepsis and investigate the latent mechanisms. METHODS: Septic AKI models were established by cecal ligation and puncture (CLP) surgery in mice and given Loganin (20, 40, 80 mg/kg) by gavage. Lipopolysaccharides (LPS)-stimulated human kidney proximal tubular (HK2) cells incubated in Loganin (5, 10, 20 µ M) were used to explore the accurate mechanisms. Survival rate, renal function (creatinine and blood urea nitrogen), and renal pathological changes were detected in septic mice. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), mitochondrial membrane potential, mitochondrial calcium overload, and nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway activation in vivo and in vitro were determined by commercial kits and Western blot. Cell apoptosis, apoptotic-related protein (cleaved caspase-3, Bcl-2, and Bax) expression and protein kinase B (AKT) phosphorylation in vivo and in vitro were measured by TUNEL staining and Western blot. Finally, AKT blockage by 10 µM LY294002 or Nrf2 inhibition by10 µ M ML385 were utilized to prove the involvement of AKT and Nrf2/HO-1 pathway in AKI during sepsis. RESULTS: We found Loganin treatment (20, 40, 80 mg/kg) mitigated septic AKI reflected by elevated renal function and palliative pathological changes. Oxidative stress and apoptosis in the kidney and LPS-treated HK2 cells were also inhibited by Loganin administration, which was accompanied by AKT and Nrf2/HO-1 pathway activation. Besides, the protective effects of Loganin could be diminished by AKT or Nrf2 blockage, indicating the involvement of AKT and Nrf2/HO-1 pathway. CONCLUSION: The results suggested that the protective effects of Loganin on AKI during sepsis might be mediated by AKT and Nrf2/HO-1 pathway signaling activation in kidney proximal tubular cells.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Iridoides/farmacologia , Substâncias Protetoras/farmacologia , Sepse/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Animais , Linhagem Celular , Cornus/química , Relação Dose-Resposta a Droga , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Iridoides/administração & dosagem , Iridoides/química , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/induzido quimicamente , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572597

RESUMO

Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Iridoides/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Morte Celular/efeitos dos fármacos , Creatinina/sangue , Citocinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Life Sci ; 272: 118808, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245967

RESUMO

BACKGROUND/AIMS: The theory of inflammation is one of the important theories in the pathogenesis of diabetic nephropathy (DN). We herein aimed to explore whether loganin affected macrophage infiltration and activation upon diabetic nephropathy (DN) by a spontaneous DN mice and a co-culture system of glomerular mesangial cells (GMCs) and macrophage cells (RAW264.7) which was induced by advanced glycation end products (AGEs). METHODS AND KEY FINDINGS: Loganin showed remarkable capacity on protecting renal from damage by mitigating diabetic symptoms, improving the histomorphology of the kidney, decreasing the expression of extracellular matrix such as FN, COL-IV and TGF-ß, reversing the production of IL-12 and IL-10 and decreasing the number of infiltrating macrophages in the kidney. Moreover, loganin showed markedly effects by suppressing iNOS and CD16/32 expressions (M1 markers), increasing Arg-1 and CD206 expressions (M2 markers), which were the phenotypic transformation of macrophage. These effects may be attributed to the inhibition of the receptor for AGEs (RAGE) /monocyte chemotactic protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2) signaling pathway, with significantly down-regulated expressions of RAGE, MCP-1 and CCR2 by loganin. Loganin further decreased MCP-1 secretion when RAGE was silenced, which means other target was involved in regulating the MCP-1 expression. While loganin combinated with the inhibitor of CCR2 exerted stronger anti-inhibition effects of iNOS expression, suggesting that CCR2 was the target of loganin in regulating the activation of macrophages. SIGNIFICANCE: Loganin could ameliorate DN kidney damage by inhibiting macrophage infiltration and activation via the MCP-1/CCR2 signaling pathway in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Iridoides/farmacologia , Macrófagos/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL2/fisiologia , Quimiocina CCL8/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Fibronectinas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Iridoides/metabolismo , Rim/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptores CCR1/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
18.
Bioengineered ; 11(1): 628-639, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33034242

RESUMO

Loganin, a major bioactive iridoid glycoside derived from Cornus officinalis, exerts different beneficial biological properties. Recently, loganin has been reported to exhibit potential anti-inflammatory effects in the intestinal tissues, while the detailed mechanisms remain elusive. This study aimed to investigate whether loganin could inhibit the inflammatory response in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) and to explore possible molecular mechanisms involved in this process. Results showed that oral administration of loganin significantly decreased body weight loss, disease activity index, colon shortening, myeloperoxidase (MPO) activity and pathologic abnormalities in UC mice. Loganin obviously inhibited the mRNA and protein levels of IL-6, TNF-α and IL-1ß in colon tissues from UC mice. Furthermore, loganin remarkably reduced macrophage M1 polarization in UC mice evidenced by reduced the number of F4/80 and iNOS dual-stained M1 macrophages, and the expression of M1 macrophage-related pro-inflammatory chemokines/cytokines including MCP-1, CXCL10 as well as COX-2. Further investigation showed that loganin upregulated the mRNA and protein levels of Sirt1, with the inhibition of NF-κB-p65 acetylation in colon tissues from UC mice. Moreover, Sirt1-specific inhibitor Ex527 administration abolished the anti-inflammatory and anti-macrophage M1 polarization effects of loganin in UC. Thus, loganin could inhibit M1 macrophage-mediated inflammation and modulate Sirt1/NF-κB signaling pathway to attenuate DSS-induced UC. Loganin was considered as a viable natural strategy in the treatment of UC.[Figure: see text].


Assuntos
Colite Ulcerativa/metabolismo , Iridoides/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Animais , Western Blotting , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
19.
Exp Ther Med ; 20(1): 591-598, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32537017

RESUMO

Severe burns may lead to intestinal inflammation and oxidative stress, resulting in intestinal barrier damage and gut dysfunction. Loganin, an iridoid glycoside compound, has been isolated from Cornus officinalis Sieb. et Zucc; however, its role in the treatment of burn injury is yet to be fully elucidated. Therefore, the present study examined the effect of loganin administration on burn-induced intestinal inflammation and oxidative stress after severe burns in male Sprague-Dawley rats. Histological injury was assessed by hematoxylin and eosin staining. Furthermore, cytokine expression in intestinal tissues was measured by ELISA and reverse transcription-quantitative PCR. Antioxidative activities were assessed by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). Apoptosis was detected by flow cytometry. Apoptosis-related proteins, toll-like receptor 4 (TLR4) protein and NF-κB translocation were examined by western blotting. Immunohistochemical staining was used to observe TLR4 and NF-κB p65 expression in intestinal tissues. The present study suggested that loganin administration significantly reduced burn injury-induced intestinal histological changes, tumor necrosis factor-α, interleukin (IL)-6 and IL-1ß production and oxidative stress, evidenced by decreased ROS levels and MDA content (P<0.05). Furthermore, loganin increased SOD, CAT and GSH-Px levels and intestinal epithelial cell apoptosis. Loganin treatment also significantly inhibited activation of the TLR4/NF-κB signaling pathway in the intestine of severely burned rats (P<0.05). In conclusion, loganin reduced burns-induced intestinal inflammation and oxidative stress, potentially by regulating the TLR4/NF-κB signaling pathway.

20.
Phytomedicine ; 67: 153166, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31955133

RESUMO

BACKGROUND: Peripheral nerve injury can produce chronic and ultimately neuropathic pain. The chronic constriction injury (CCI) model has provided a deeper understanding of nociception and chronic pain. Loganin is a well-known herbal medicine with glucose-lowering action and neuroprotective activity. PURPOSE: This study investigated the molecular mechanisms by which loganin reduced CCI-induced neuropathic pain. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham, sham+loganin, CCI and CCI+loganin. Loganin (1 or 5 mg/kg/day) was injected intraperitoneally once daily for 14 days, starting the day after CCI. For behavioral testing, mechanical and thermal responses were assessed before surgery and on d1, d3, d7 and d14 after surgery. Sciatic nerves (SNs) were collected to measure proinflammatory cytokines. Proximal and distal SNs were collected separately for Western blotting and immunofluorescence studies. RESULTS: Thermal hyperalgesia and mechanical allodynia were reduced in the loganin-treated group as compared to the CCI group. Loganin (5 mg/kg/day) prevented CCI from inducing proinflammatory cytokines (TNF-α, IL-1ß), inflammatory proteins (TNF-α, IL-1ß, pNFκB, pIκB/IκB, iNOS) and receptor (TNFR1, IL-1R), adaptor protein (TRAF2) of TNF-α, and Schwann cell demyelination and axonal damage. Loganin also blocked IκB phosphorylation (p-IκB). Double immunofluorescent staining further demonstrated that pNFκB/pIκB protein was reduced by loganin in Schwann cells on d7 after CCI. In the distal stumps of injured SN, Schwann cell demyelination was correlated with pain behaviors in CCI rats. CONCLUSION: Our findings indicate that loganin improves CCI-induced neuroinflammation and pain behavior by downregulating TNF-α/IL-1ß-dependent NF-κB activation.


Assuntos
Analgésicos não Narcóticos/farmacologia , Iridoides/farmacologia , NF-kappa B/metabolismo , Neuralgia/tratamento farmacológico , Células de Schwann/efeitos dos fármacos , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Dor Crônica/patologia , Constrição , Citocinas/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Interleucina-1beta/metabolismo , Masculino , Neuralgia/metabolismo , Neuralgia/patologia , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA