Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663490

RESUMO

Preeclampsia (PE) is a complex disorder affecting pregnant women, leading to significant maternal and fetal morbidity and mortality. Understanding the cellular dynamics and molecular mechanisms underlying PE is crucial for developing effective therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) to delineate the cellular landscape of the placenta in PE, identifying 11 distinct cell subpopulations, with macrophages playing a pivotal role in mediating cell-cell communication. Specifically, the transcription factor JUNB was found to be a key gene in macrophages from PE samples, influencing the interaction between macrophages and both epithelial and endothelial cells. Functional experiments indicated that interference with JUNB expression promoted macrophage polarization towards an M2 phenotype, which facilitated trophoblast invasion, migration, and angiogenesis. Mechanistically, JUNB regulated the MIIP/PI3K/AKT pathway, as evidenced by gene expression analysis following JUNB knockdown. The study further demonstrated that targeting JUNB could activate the PI3K/AKT pathway by transcriptionally activating MIIP, thus promoting M2 polarization and potentially delaying the onset of PE. These findings present new insights into the pathogenesis of PE and suggest a novel therapeutic approach by modulating macrophage polarization.


Assuntos
Macrófagos , Fosfatidilinositol 3-Quinases , Pré-Eclâmpsia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/genética , Gravidez , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Placenta/metabolismo , Placenta/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ativação de Macrófagos/genética , Movimento Celular/genética
2.
Appl Microbiol Biotechnol ; 108(1): 218, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372808

RESUMO

Ovarian cancer poses a significant threat to women's health, with conventional treatment methods encountering numerous limitations, and the emerging engineered bacterial anti-tumor strategies offer newfound hope for ovarian cancer treatment. In this study, we constructed the VNP20009-Abvec-Igκ-MIIP (VM) engineered strain and conducted initial assessments of its in vitro growth performance and the expression capability of migration/invasion inhibitory protein (MIIP). Subsequently, ID8 ovarian cancer cells and mouse cancer models were conducted to investigate the impact of VM on ovarian cancer. Our results revealed that the VM strain demonstrated superior growth performance, successfully invaded ID8 ovarian cancer cells, and expressed MIIP, consequently suppressing cell proliferation and migration. Moreover, VM specifically targeted tumor sites and expressed MIIP which further reduced the tumor volume of ovarian cancer mice (p < 0.01), via the downregulation of epidermal growth factor receptor (EGFR), Ras, p-MEK, and p-ERK. The downregulation of the PI3K/AKT signaling pathway and the decrease in Bcl-2/Bax levels also indicated VM's apoptotic potency on ovarian cancer cells. In summary, our research demonstrated that VM exhibits promising anti-tumor effects both in vitro and in vivo, underscoring its potential for clinical treatment of ovarian cancer. KEY POINTS: • This study has constructed an engineered strain of Salmonella typhimurium capable of expressing anticancer proteins • The engineered bacteria can target and colonize tumor sites in vivo • VM can inhibit the proliferation, migration, and invasion of ovarian cancer cells.


Assuntos
Vacinas Bacterianas , Neoplasias Ovarianas , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/terapia , Transdução de Sinais , Modelos Animais de Doenças , Quinases de Proteína Quinase Ativadas por Mitógeno
3.
Cell Biosci ; 14(1): 12, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245780

RESUMO

BACKGROUND: The enrichment of peri-cancerous adipose tissue is a distinctive feature of colorectal cancer (CRC), accelerating disease progression and worsening prognosis. The communication between tumor cells and adjacent adipocytes plays a crucial role in CRC advancement. However, the precise regulatory mechanisms are largely unknown. This study aims to explore the mechanism of migration and invasion inhibitory protein (MIIP) downregulation in the remodeling of tumor cell-adipocyte communication and its role in promoting CRC. RESULTS: MIIP expression was found to be decreased in CRC tissues and closely associated with adjacent adipocyte browning. In an in vitro co-culture model, adipocytes treated with MIIP-downregulated tumor supernatant exhibited aggravated browning and lipolysis. This finding was further confirmed in subcutaneously allografted mice co-injected with adipocytes and MIIP-downregulated murine CRC cells. Mechanistically, MIIP interacted with the critical lipid mobilization factor AZGP1 and regulated AZGP1's glycosylation status by interfering with its association with STT3A. MIIP downregulation promoted N-glycosylation and over-secretion of AZGP1 in tumor cells. Subsequently, AZGP1 induced adipocyte browning and lipolysis through the cAMP-PKA pathway, releasing free fatty acids (FFAs) into the microenvironment. These FFAs served as the primary energy source, promoting CRC cell proliferation, invasion, and apoptosis resistance, accompanied by metabolic reprogramming. In a tumor-bearing mouse model, inhibition of ß-adrenergic receptor or FFA uptake, combined with oxaliplatin, significantly improved therapeutic efficacy in CRC with abnormal MIIP expression. CONCLUSIONS: Our data demonstrate that MIIP plays a regulatory role in the communication between CRC and neighboring adipose tissue by regulating AZGP1 N-glycosylation and secretion. MIIP reduction leads to AZGP1 oversecretion, resulting in adipose browning-induced CRC rapid progression and poor prognosis. Inhibition of ß-adrenergic receptor or FFA uptake, combined with oxaliplatin, may represent a promising therapeutic strategy for CRC with aberrant MIIP expression.

4.
Placenta ; 130: 46-52, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379183

RESUMO

INTRODUCTION: Choriocarcinoma is a highly invasive gynaecologic malignancy. Molecular mechanism of metastasis in choriocarcinoma is poorly understood. Migration and invasion inhibitory protein (MIIP) regulates cell migration and invasion. Therefore, we aimed to elucidate the function of MIIP in choriocarcinoma. METHODS: Choriocarcinoma cell lines, JAR and JEG-3, were transfected with lentivirus carrying the MIIP-interfering RNA (to downregulate MIIP expression) or left untransfected (negative control). Cell migration and invasion were studied using transwell migration assays and scratch assays. In vivo tumour burden was studied using tumour xenograft models in specific-pathogen-free nude mice and live imaging. We elucidated possible molecular signalling pathways using western blotting. RESULTS: In transwell migration and scratch assays MIIP-downregulated JAR and JEG-3 cells migrated and invaded faster compared to their respective negative control cells. Migration and invasion by the MIIP-upregulated SWAN cells was slower than that by negative control SWAN cells. Live imaging revealed that bioluminescence values were higher in MIIP-downregulated tumours than in the negative control tumours. Mice with MIIP-downregulated tumours had higher serum human chorionic gonadotropin (HCG) levels than those with negative control tumours. The MIIP expression was negatively correlated with that of histone deacetylase (HDAC6) and positively correlated with that of acetylated α-tubulin. DISCUSSION: Thus, MIIP-by inhibiting cellular motility in choriocarcinoma-acts as a tumour suppressor gene. This highlights a potential therapeutic target for refractory choriocarcinoma. Additionally, HDAC6 and acetylated α-tubulin may be involved in the regulatory effects of MIIP on the biobehaviour of choriocarcinoma cells.


Assuntos
Coriocarcinoma , Neoplasias Uterinas , Gravidez , Feminino , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Camundongos Nus , Tubulina (Proteína) , Coriocarcinoma/patologia , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Uterinas/patologia
5.
Cancer Biol Med ; 19(6)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34931765

RESUMO

OBJECTIVE: In various cancers, migration and invasion inhibitory protein (MIIP) is expressed at low level and is involved in cancer pathogenesis. Herein, we sought to explore the function of MIIP in clear cell renal cell carcinoma (ccRCC). METHODS: CCK-8, colony formation, cell cycle, and endothelial cell tube formation assays were performed to evaluate the roles of MIIP in ccRCC proliferation and angiogenesis. To explore the underlying mechanism, we conducted RNA-sequencing, GSEA, qRT-PCR, Western blot, ELISA, cell transfection, coimmunoprecipitation, and ubiquitination assays in ccRCC cell lines. Furthermore, xenograft tumor growth in nude mice, and Ki-67 and CD31 staining in xenograft tissues were examined. Finally, the association of MIIP expression with clinical pathology and the expression status of HIF-2α and cysteine-rich 61 (CYR61) were further analyzed in human RCC tissues through Western blot and immunohistochemistry. RESULTS: Both in vitro and in vivo functional experiments indicated that forced expression of MIIP inhibited ccRCC proliferation and angiogenesis, whereas silencing MIIP either in normal HK-2 cells or in ccRCC cells had the opposite effect (P < 0.05). Mechanistically, CYR61 was identified as a gene significantly downregulated by MIIP overexpression, and was required for the suppressive role of MIIP in ccRCC. MIIP was found to promote HSP90 acetylation and thus impair its chaperone function toward HIF-2α. Consequently, RACK1 binds HIF-2α and causes its ubiquitination and proteasomal degradation, thus decreasing the transcription of its target, CYR61. Finally, analyses of clinical samples demonstrated that MIIP is significantly downregulated in cancer vs. normal tissues in RCC cases, and its expression is negatively associated with histological grade, metastasis, the prognosis of patients with RCC, and the expression of HIF-2α and CYR61 (P < 0.05). CONCLUSIONS: MIIP is a novel tumor suppressor in ccRCC via negative regulation of HIF-2α-CYR61 axis.


Assuntos
Carcinoma de Células Renais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Renais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proliferação de Células , Cisteína/genética , Cisteína/metabolismo , Cisteína/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Processos Neoplásicos
6.
Am J Cancer Res ; 10(2): 630-647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195032

RESUMO

Growing evidence have shown that the migration and invasion inhibitory protein (MIIP, also known as IIp45) functions as a tumor suppressor and its expression is downregulated in several types of cancer, yet the function of MIIP in prostate cancer (PCa) and the underlying mechanism of action remains largely unknown. Here we demonstrated that MIIP acts as a suppressor of PCa by inhibiting epithelial-mesenchymal transition (EMT) and cell invasion. Overexpressing MIIP repressed cellular invasion of PC3 and DU145 in vitro, accompanied by a decrease of EMT-inducing factors, and an increase of E-cadherin and KLF17. Moreover, a stable MIIP knockdown in PCa cells promoted the tumor growth or bone osteolytic lesions, when xenografted subcutaneously or via tibia injection. Mechanistically, MIIP represses two onco-miRNAs, miR-181a-5p and miR-181b-5p, thus removing the inhibitory effect of these two miRNAs on their target KLF17, which functions as a negative regulator of EMT by directly suppressing the transcription of SNAIL1/2 and TWIST. Finally, by examining the expression of MIIP, miR-181a/b-5p, KLF17, and E-cadherin in paired cancer samples v.s. adjacent normal tissues from a cohort of human prostate cancer patients, we demonstrated that downregulation of MIIP was well associated with downregulation of KLF17 and E-cadherin, but upregulation of miR-181a/b-5p. The positive correlation between MIIP and KLF17 was also confirmed via immunohistochemical staining of a PCa tissue microarray. Taken together, our findings reveal a novel function of MIIP as an EMT inhibitor in PCa and illustrate the underlying molecular mechanisms, providing new insights into the tumor-suppressor role of MIIP.

7.
Cell Commun Signal ; 17(1): 44, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092266

RESUMO

BACKGROUND: Over-activation of phosphatidylinositol 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) signaling pathway is one of important mechanisms to promote castration resistant prostate cancer, the final stage of prostate cancer (PCa). Dysregulation of PP1-meditaed AKT dephosphorylation might contribute to such an event but is not fully understood. As a newly identified tumor suppressor, MIIP exerts its role in various types of cancer but has not been investigated in PCa. RESULTS: We first demonstrated that overexpression of migration and invasion inhibitory protein (MIIP) in human PCa cell lines suppresses their growth while knockdown of MIIP does the opposite in vitro. Although MIIP has no effect on the expression of AR and its target genes or the nuclear translocation of AR in AR-positive PCa cells, MIIP overexpression significantly inhibits activation of AKT-mTOR pathway in both AR- positive and negative PCa cells whereas knockdown of MIIP enhances AKT-mTOR signaling. Using Western blot, immunofluorescence co-localization and co-immunoprecipitation analysis, we found that MIIP interacts with PP1α via its C-terminal part but does not affect its protein level. Importantly, silence of PP1α reversed the inhibitory effect of MIIP on AKT phosphorylation and cell growth in PCa cell lines, while MIIP∆C, which is incapable of interacting with PP1α, loses MIIP's effect, suggesting that MIIP exerts its roles via interaction with PP1α. Further, MIIP overexpression inhibits the growth of both AR- positive and negative PCa xenograft in nude mice. Finally, immunohistochemical staining of PCa tissue microarray showed that MIIP expression level is downregulated in PCa and negatively correlated with Gleason score of PCa. CONCLUSION: We discovered that MIIP is a novel suppressor of oncogenic AKT-mTOR signaling in PCa by facilitating PP1-meditaed AKT dephosphorylation. Our study further emphasized the tumor suppressive role of MIIP and illustrated a novel mechanism.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Onco Targets Ther ; 11: 8951-8964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588008

RESUMO

BACKGROUND: MIIP is associated with cancer progression in various cancers. However, its expression pattern, and associated molecular mechanisms in gastric cancer (GC) progression are still mysterious. We aimed to explore the role of MIIP in proliferation and invasion of GC. MATERIALS AND METHODS: MIIP expression was evaluated in human GC tissues and cell lines. Public clinical database of GC patients was used to probe the correlation between MIIP expression and prognosis of patients. The effects of forced MIIP expression on GC cells were determined by MTT, cell cycle distribution, colony formation, wound-healing and Transwell assays in vitro, as well as in vivo growth of subcutaneous tumor xenografts and metastasis of xenografted tumors to the lungs in mice. The expressions of GC progression-associated genes, including HOTAIR, MALAT1, HDAC6, AC-tubulin, and cyclin D1, were assessed by Western blotting or qRT-PCR. RESULTS: Both GC tissues and GC cell lines had lower MIIP expression. Higher level of MIIP in GC tissues predicts better survival in patients. Ectopic expression of MIIP in GC cell lines BGC823 and HGC27 induced G0/G1 cell cycle arrest and inhibited cell proliferation, colony formation, migration and invasion in vitro, as well as the growth of GC xenografts and metastasis of tumors in vivo. Furthermore, overexpression of MIIP suppressed mRNA expressions of HOTAIR and MALAT1, decreased protein expression of HDAC6 and cyclin D1, and elevated AC-tubulin protein expression. CONCLUSION: MIIP is a suppressor for GC progression and is a potential therapeutic target for treating GC.

9.
J Pathol ; 241(1): 67-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27741356

RESUMO

The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/genética , Proteínas de Transporte/genética , Instabilidade Cromossômica/genética , Neoplasias Colorretais/genética , Haploinsuficiência/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Animais , Proteínas de Transporte/biossíntese , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Regulação para Baixo/genética , Feminino , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Ensaio Tumoral de Célula-Tronco
10.
J Hematol Oncol ; 9(1): 112, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27760566

RESUMO

BACKGROUND: Endometrial carcinoma (EC) is one of the most common malignancies of the female reproductive system. Migration and invasion inhibitory protein (MIIP) gene was recently discovered candidate tumor suppress gene which located at chromosome 1p36.22. 1p36 deletion was found in many types of tumor including EC. In the present study, we will determine the role and mechanism of MIIP in EC metastasis. METHODS: Immunohistochemistry was used to measure MIIP expression in normal and EC tissue. Both gain-of-function (infection) and loss-of-function (siRNA) assays were used to alter MIIP expression levels. The effect of MIIP on cell migration and invasion was measured by transwell assay. F-actin immunofluorescence staining was used to observe the cell morphology. The activation of GTP-loaded Rac1 was evaluated by Rac activity assay kit. Immunoprecipitation/WB was used to measure the interaction between MIIP and PAK1. RESULTS: We demonstrate that MIIP expression was significantly decreased in EC patients comparing to the normal ones, and decreased MIIP expression in EC tissues is associated with deep myometrial invasion, advanced stage, and the presence of lymph node metastasis. Using both gain-of-function (infection) and loss-of-function (siRNA) assays, we show that MIIP markedly blocked EC cell migration, whereas loss of MIIP led to increase in EC cell migration. We demonstrate that elevated expression of MIIP resulted in cytoskeleton reorganization with decreased formation of lamellipodia. We also provide evidence that MIIP is a key molecule in directing Rac1 signaling cascades in EC. Ectopically expressed MIIP consistently competed with Rac1-GTP for binding with the PAK1 p21-binding domain. Our data show that MIIP and PAK1 bind each other and that a C-terminal polyproline domain of MIIP is required for PAK1 binding. Deletion of the PAK1-binding domain of MIIP reduced cell migration-inhibiting activity. CONCLUSIONS: MIIP may function as a tumor suppressor gene for endometrial carcinoma. MIIP attenuates Rac1 signaling through a protein interaction network, and loss of this regulator may contribute to EC metastasis.


Assuntos
Proteínas de Transporte/fisiologia , Neoplasias do Endométrio/patologia , Metástase Neoplásica , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Citoesqueleto/ultraestrutura , Neoplasias do Endométrio/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metástase Linfática , Invasividade Neoplásica , Ligação Proteica , Pseudópodes , RNA Interferente Pequeno/farmacologia , Análise Serial de Tecidos , Quinases Ativadas por p21/metabolismo
11.
Tumour Biol ; 37(8): 10141-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26825982

RESUMO

The migration and invasion inhibitory protein (MIIP) was shown to function as a tumor suppressor gene in gliomas by inhibiting tumor cell growth, migration, and invasion. However, its role and clinical significance in esophageal squamous cell carcinoma (ESCC) have not been elucidated. We investigated the correlation of MIIP expression and clinical outcome in a group of surgically resected ESCCs. Tissue microarrays constructed of 253 surgically resected ESCC primary tumors and paired paracancerous normal esophageal epithelia were used for MIIP evaluation by immunohistochemistry. The clinical and prognostic significance of MIIP expression was analyzed statistically. The expression of MIIP expression in cancer tissues was increased significantly in comparison with the paired paracancerous normal epithelia (P < 0.001). And, MIIP expression was associated with ESCC cells' differentiation (P < 0.001). By Kaplan-Meier analysis, patients with low MIIP expression exhibited significantly improved overall survival (OS, P = 0.039) and a tendency of improved disease-free survival (DFS, P = 0.086) than those with high MIIP expression. In addition, MIIP expression could distinguish OS or DFS of patients with tumors in stage T3-4 (P = 0.020, 0.028), N0 (P = 0.008, 0.032), and stage II (P = 0.004, 0.019), as well as at lower thoracic esophagus (P = 0.024, 0.090). Multivariate analysis showed that MIIP expression was an independent prognostic factor in ESCC OS and DFS. In conclusion, MIIP expressed higher in ESCCs than in paracancerous normal esophageal epithelia and was a positive, independent prognostic factor in resected ESCCs.


Assuntos
Carcinoma de Células Escamosas/química , Proteínas de Transporte/fisiologia , Neoplasias Esofágicas/química , Proteínas de Neoplasias/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Proteínas de Transporte/análise , Diferenciação Celular , Intervalo Livre de Doença , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Esofagectomia , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/análise , Estadiamento de Neoplasias , Método Simples-Cego , Análise Serial de Tecidos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA