RESUMO
Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, α-phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF-α, IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation.
Assuntos
Candidíase , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/química , Antifúngicos/química , Óleos de Plantas/química , Equador , Candida , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Anti-Inflamatórios/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Staphylococcus aureus frequently causes subclinical mastitis around the world with a high impact on the milk industry and public health. Essential oils (EO) are recognized antimicrobials that can be synergistic with antibiotics. The main objective of this study was to evaluate the essential oil (EO) of Melaleuca armillaris as an adjuvant of erythromycin (ERY) for the alternative treatment of bovine mastitis caused by S. aureus. The Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC) of EO, ERY, and its combinations were established against S. aureus at different pHs (7.4, 6.5 and 5.0), emulating extra and intracellular conditions. Sensitive (N = 3) and resistant (N = 3) strains to ERY and S. aureus ATCC 29213 as control were used. Math models were applied to describe the antibacterial activity of EO and combinations EO-ERY. The EO was bactericidal against all the strains independently of the pH with a slight improvement in acid conditions. The synergism between EO and ERY was estimated by the Fractional Inhibitory Concentration Index (FIC) and by mathematical modeling of the bacterial killing data. Synergism was observed with ERY, where combinations had bactericidal activity also even with pH modification. M. armillaris EO is an interesting adjuvant for ERY, being a promissory option for further analysis of intracellular efficacy against S. aureus.
RESUMO
Bioactive glasses have been proposed for bone tissue engineering due to their excellent biocompatibility and osteo-inductive behaviour. The generation of mesoporous bioactive glass (nano) particles adds a high surface area for the dissolution and release of bioactive ions, and the possibility to load them with different drugs for antibacterial purposes. Essential oils (EO) are an interesting resource for alternative medical therapy, providing antimicrobial compounds that come from organic/natural resources like aromatic plants. Also, a biological polymer, such as chitosan, could be used to control the release of active agents from mesoporous bioactive glass (MBG) loaded particles. This work presents MBG particles with nominal composition (in mol) 60% SiO2, 30% CaO and 10% P2O5, loaded with essential oil of Melaleuca armillaris, which contains 1,8-cineol as the main active component, with an inhibitory in vitro activity against several bacterial species. Also, co-loading with a broad-spectrum antibiotic, namely gentamicin, was investigated. The MBG particles were found to be of around 300nm in diameter and to exhibit highly porous open structure. The release of EO from the particles reached 72% of the initial content after the first 24 h, and 80% at 48 h of immersion in phosphate buffered solution. Also, the MBG particles with EO and EO-gentamicin loading presented in vitro apatite formation after 7 days of immersion in simulated body fluid. The antibacterial tests indicated that the main effect, after 24 h of contact with the bacteria, was reached either for the MBG EO or MBG EO-gentamicin particles against E. coli, while the effect against S. aureus was less marked. The results indicate that MBG particles are highly bioactive with the tested composition and loaded with EO of Melaleuca armillaris. The EO, also combined with gentamicin, acts as an antibacterial agent but with different efficacy depending on the bacteria type.
RESUMO
Essential oils (EO) are a great antimicrobial resource against bacterial resistance in public health. Math models are useful in describing the growth, survival, and inactivation of microorganisms against antimicrobials. We evaluated the antimicrobial activity of Melaleuca armillaris EO obtained from plants placed in the province of Buenos Aires (Argentina) against Staphylococcus aureus. The minimum inhibitory and bactericidal concentrations were close and decreased, slightly acidifying the medium from pH 7.4 to 6.5 and 5.0. This result was also evidenced by applying a sigmoid model, where the time and EO concentration necessaries to achieve 50% of the maximum effect decreased when the medium was acidified. Moreover, at pH 7.4, applying the Gompertz model, we found that subinhibitory concentrations of EO decreased the growth rate and the maximum population density and increased the latency period concerning the control. Additionally, we established physicochemical parameters for quality control and standardization of M. armillaris EO. Mathematical modeling allowed us to estimate key parameters in the behavior of S. aureus and Melaleuca armillaris EO at different pH. This is interesting in situations where the pH changes are relevant, such as the control of intracellular infections in public health or the development of preservatives for the food industry.
RESUMO
Staphylococcus aureus is the major subclinical mastitis-causing pathogen in dairy cows. In some European and Latin American countries, rifaximin (RIF) is a commonly used therapy at drying off. Phytotherapeutics are alternatives for the treatment of infectious diseases. Melaleuca armillaris essential oil (EO) has been reported as a good antimicrobial against S. aureus. The aim of this work was to investigate, in vitro, the combined effect of EO and RIF to identify a synergic interaction against S. aureus in order to obtain enough information for subsequent pharmacokinetic/pharmacodynamic studies. The minimum inhibitory concentrations (MIC) for RIF, EO, and combinations of these against S. aureus strains were determined at pH 7.4, 6.5, and 5.0, representing intracellular conditions where S. aureus is usually located. The fractional inhibitory concentration index (FIC) and the index of antibacterial activity (E) were evaluated. The MIC of EO at pH 7.4 was 25-12.5 µL/mL and decreased with the acidity of the medium. RIF presented a high antimicrobial activity (0.032 µg/mL) against S. aureus regardless of the pH conditions. Combining RIF with EO, we found a synergic effect. A mix of 0.004 µg/mL of RIF and 12.5 µL/mL of EO led to a virtual eradication effect against wild-type strains at pH 7.4. Media acidification improves the EO/RIF activity, so EO would be a good adjuvant for RIF to treat staphylococcal infections and decrease antimicrobial resistance.
RESUMO
The emergence of resistance to antibiotics has been favored by abuse in the application of antimicrobials in human and animal medicine. Essential oils are a great resource to deal with this crisis. Melaleuca armillaris belongs to the family of Myrtaceae, rich in species with essential oils. Plant extracts has shown antimicrobial activity in many investigations. Cloxacillin (CLOX) is an antibiotic widely used in veterinary medicine against Staphylococcus aureus. Our aim was to assess pharmacodynamic interaction established by combining essential oil of M. armillaris (EO) with CLOX in search of a synergistic effect that maximizes the antibacterial activity against S. aureus. The EO was obtained by steam distillation and its composition was analyzed by a GC-FID-MS. The most abundant components in the EO were 1.8 cineole (72.3%), limonene (7.8%). and α-pinene (6%). We worked with wild type S. aureus strains (n = 3) isolated from Holstein cows, and S. aureus ATCC 29213 as the reference strain. The Minimum Inhibitory Concentration (MIC) of CLOX, EO and the combination was determined by microdilution in broth at pH 7.4; 6.5 and 5.0. The checkerboard method was applied to evaluate the interaction between CLOX and EO. The Fractional Inhibitory Concentration index (FIC) was established. From those combinations that yielded the lowest FIC values, we evaluated the index of antibacterial activity (E), established as the difference between the Log10 values of the number of viable bacteria at the initial (nt0) and at the end of the test (nt24). So, time-killing curves with CLOX and EO/CLOX combination at 0.5, 1, 2, 4, and 8 fold the MIC in broth at pH 7.4; 6.5 and 5.0 were prepared. We considered Bacteriostatic effect (E = 0) Bactericidal effect (E = -3) and Effect of virtual eradication of bacteria (E = -4). A clear synergic activity between the EO and the CLOX was demonstrated, which allows reducing the MIC of ß-lactam against S. aureus. This interaction was favored by acidification of the medium, where lower concentrations of CLOX achieved a bactericidal effect, close to virtual eradication, in the presence of small amounts of EO.