RESUMO
Combination therapies have attracted significant attention because they address the limitations of monotherapy while improving overall efficacy. In this study, we designed a novel nanoplatform, named GOx@Fe-DMSN@PDA (GFDP), by integrating Fe2+ into dendritic mesoporous silica nanoparticles (DMSN) and selecting glucose oxidase (GOx) as the model drug loaded into the DMSN pores. Additionally, we coated the surface of the DMSN with polydopamine (PDA) to confer pH/near infrared (NIR) light-responsive controlled-release behavior and photothermal therapy (PTT). The introduction of Fe2+ into the DMSN framework greatly improved biodegradability and enhanced the peroxidase (POD)-like activity of GFDP. In addition, GOx could consume glucose and generate hydrogen peroxide (H2O2) within tumor cells to facilitate starvation therapy and enhance cascade catalysis. The PDA coating provided the DMSN with an intelligent response release ability, promoting efficient photothermal conversion and achieving the PTT effect. Cellular tests showed that under NIR light irradiation, GFDP exhibited a synergistic effect of PTT-enhanced starvation therapy and cascade catalysis, with a half-maximal inhibitory concentration (IC50) of 2.89 µg/mL, which was significantly lower than that of GFDP without NIR light irradiation (18.29 µg/mL). The in vivo anti-tumor effect indicated that GFDP could effectively accumulate at the tumor site for thermal imaging and showed remarkable synergistic therapeutic effects. In summary, GFDP is a promising nanoplatform for multi-modal combination therapy that integrates starvation therapy, PTT, and cascade catalysis.
Assuntos
Glucose Oxidase , Ferro , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Nanopartículas/química , Humanos , Porosidade , Animais , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glucose Oxidase/farmacologia , Camundongos , Catálise , Ferro/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Raios Infravermelhos , Propriedades de Superfície , Terapia Fototérmica , Tamanho da Partícula , Indóis/química , Indóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fototerapia , Proliferação de Células/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Linhagem Celular TumoralRESUMO
Despite advancements in nanomedicine for drug delivery, many drug-loaded nanoparticles reduce tumor sizes but often fail to prevent metastasis. Mesoporous silica nanoparticles (MSNs) have attracted attention as promising nanocarriers. Here, we demonstrated that MSN-PEG/TA 25, with proper surface modifications, exhibited unique antimetastatic properties. In vivo studies showed that overall tumor metastasis decreased in 4T1 xenografts mice treated with MSN-PEG/TA 25 with a notable reduction in lung tumor metastasis. In vitro assays, including wound-healing, Boyden chamber, tube-formation, and real-time cell analyses, showed that MSN-PEG/TA 25 could modulate cell migration of 4T1 breast cancer cells and interrupt tube formation by human umbilical vein endothelial cells (HUVECs), key factors in suppressing cancer metastasis. The synergistic effect of MSN-PEG/TA 25 combined with liposomal-encapsulated doxorubicin (Lipo-Dox) significantly boosted mouse survival rates, outperforming Lipo-Dox monotherapy. We attributed the improved survival to the antimetastatic capabilities of MSN-PEG/TA 25. Moreover, Dox-loaded MSN-PEG/TA 25 suppressed primary tumors while retaining the antimetastatic effect, thereby enhancing therapeutic outcomes and overall survival. Western blot and qPCR analyses revealed that MSN-PEG/TA 25 interfered with the phosphorylation of ERK, FAK, and paxillin, thus impacting focal adhesion turnover and inhibiting cell motility. Our findings suggest that drug-free MSN-PEG/TA 25 is highly efficient for cancer treatment via suppressing metastatic activity and angiogenesis.
RESUMO
Curcumin (CUR) is a hydrophobic polyphenol with considerable antitumor efficiency, but its clinical application is limited because of its poor solubility and low stability in aqueous solution and lack of targeting in vivo. Herein, we fabricated a tumor-targeting drug delivery system by loading CUR and cloaking homologous cancer cell membrane (CM) onto mesoporous silica NPs (MSN-CUR@CM). Characterization analysis showed that MSN-CUR@CM with a size of approximately 70 nm showed high water solubility and biocompatibility. Besides, MSN-CUR@CM exhibited tumor-targeting and excellent anti-gastric cancer efficiency both in vitro and in vivo owing to the cellular self-recognition of CM. In the established xenograft tumor nude mouse model, it was still significantly drug accumulated at the tumor site 72 h post administration. In addition, the mean tumor volume and weight of the MSN-CUR@CM group were was 3.97 and 7.47 times smaller than those of the CUR group. Ferroptosis, a type of non-apoptotic regulated cell death accompanied by iron-dependent lipid peroxidation, was triggered by MSN-CUR@CM. Further analysis demonstrated that MSN-CUR@CUR upregulated heme oxygenase (HO-1) levels whereas it downregulated the expression of glutathione peroxidase 4 (GPX4) in SGC7901 cells in vitro, indicating that the canonical and noncanonical ferroptosis pathways were regulated by MSN-CUR@CM. In conclusion, our study demonstrated that MSN-CUR@CM with high water solubility, biocompatibility, and tumor-targeting properties inhibited gastric cancer both in vitro and in vivo by triggering ferroptosis and provided an admirable cancer therapy efficacy.
Assuntos
Curcumina , Ferroptose , Camundongos Nus , Nanopartículas , Neoplasias Gástricas , Ensaios Antitumorais Modelo de Xenoenxerto , Curcumina/farmacologia , Curcumina/administração & dosagem , Curcumina/química , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Animais , Ferroptose/efeitos dos fármacos , Humanos , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Solubilidade , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Dióxido de Silício/química , Portadores de Fármacos/química , Peroxidação de Lipídeos/efeitos dos fármacos , MasculinoRESUMO
This study investigates the anticancer effects of SPION-based silica nanoparticles carrying 5-fluorouracil (5-FU) or oxaliplatin (OX), and metformin (MET) on colorectal cancer cells. Nanocarriers were equipped with pH-responsive gold gatekeepers for controlled release, PEGylation for longer circulation, and folic acid (FA) for targeted delivery. The effects were evaluated by investigating cell viability, cellular uptake, flow cytometry, and clonogenic assay in vitro. The efficacy of the system was also tested in vivo on C57BL/6 mice bearing HT-29 tumors, and potential side effects were evaluated. Nanocarriers were synthesized with hydrodynamic diameters of 79.8 nm for 5-FU and 85.2 nm for OX; zeta potentials of -21 and -22 mV, respectively, and remained stable after 72 h. Encapsulation efficiencies were 85 % for 5-FU, 80 % for OX, and 83 % for MET, with loading capacities of 44 %, 38 %, and 41 %, respectively. Drug release in acidic buffer was 38.7 % for 5-FU, 32.8 % for OX, and 43.5 % for MET. MTT assay showed increased toxicity due to FA conjugation, while PEGylation reduced the hemolysis activity. Targeted nanocarriers demonstrated superior cellular uptake and tumor localization compared to non-targeted variants. The combination of 5-FU-MET and OX-MET nanocarriers with radiation therapy (RT) demonstrated the greatest effect on their antitumor activity, accompanied by minimal side effects indicating effective tumor targeting in vivo. MRI and CT imaging further supported these findings. This study underscores the synergistic impact of MET alongside RT on the inhibition of cancer cells and tumor growth for both targeted 5-FU and OX nanocarriers reflecting the significant radiosensitizing properties of MET.
RESUMO
Combinatorial methods to repolarize tumor-associated macrophages from anti-inflammatory to pro-inflammatory phenotypes offers a promising route for cancer immunotherapy. However, most studies examine biochemical combinations alone. Therefore, we studied simultaneous chemical and mechanical stimuli as orthogonal cues for enhanced immunomodulation. We engineered the surfaces of hydrophobically functionalized mesoporous silica nanoparticles (F108-hMSNs) to encapsulate the immunomodulator resiquimod and kill cancer cells through high-intensity focused ultrasound (HIFU)-mediated inertial cavitation, releasing damage-associated molecular patterns (DAMPs) for prolonged macrophage stimulation. The HIFU doses alone did not affect cells, but in combination with F108-hMSNs, achieved significantly higher cancer cell death and DAMP generation. Inflammatory markers (CD86, MHC II, iNOS) were upregulated in tumor-associated-like macrophages treated with F108-hMSNs in the presence of HIFU and experienced the greatest inflammatory phenotypic shift of all conditions tested. This work suggests that chemical and mechanical activation facilitated by engineered nanoparticles offer a promising treatment against immunologically cold tumors.
RESUMO
Background: Sorafenib-resistant (SR) hepatocellular carcinoma (HCC) is a current serious problem in liver cancer treatment. Numerous phytochemicals derived from plants exhibit anticancer activity but have never been tested against drug-resistant cells. Methods: Avocado seed extract (APE) isolated by maceration was analysed for its phytochemical composition and anticancer activity. Novel design charge-switchable pH-responsive nanocarriers of aminated mesoporous silica nanoparticles with conjugated galactose (GMSN) were synthesised for delivering APE and their physicochemical properties were characterized. The drug loading efficiency (%LE) and entrapment efficiency (%EE) were evaluated. Anticancer activity of APE loaded GMSN was measured against HCC (HepG2, Huh-7) and SR-HCC (SR-HepG2). Results: Anticancer activity of APE against non-resistant HepG2 (IC50 50.9 ± 0.83 µg mL-1), Huh-7 (IC50 42.41 ± 1.88 µg mL-1), and SR-HepG2 (IC50 62.58 ± 2.29 µg mL-1) cells was confirmed. The APE loaded GMSN had a diameter of 131.41 ± 14.41 nm with 41.08 ± 2.09%LE and 44.96 ± 2.26%EE. Galactose functionalization (55%) did not perturb the original mesoporous structure. The GMSN imparted positive surface charges, 10.3 ± 0.61mV at acidic medium pH 5.5 along with rapid release of APE 45% in 2 h. The GMSN boosted cellular uptake by HepG2 and SR-HepG2 cells, whereas the amine functionalized facilitated their endosomal escape. Their anticancer activity was demonstrated in non-resistant HCC and SR-HCC cells with IC50 values at 30.73 ± 3.14 (HepG2), 21.86 ± 0.83 (Huh-7), 35.64 ± 1.34 (SR-HepG2) µg mL-1, respectively, in comparison to the control and non-encapsulated APE. Conclusion: APE loaded GMSN is highly effective against both non-resistant HCC and SR-HCC and warrants further in vivo investigation.
Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Galactose , Neoplasias Hepáticas , Nanopartículas , Persea , Extratos Vegetais , Sementes , Dióxido de Silício , Sorafenibe , Humanos , Persea/química , Galactose/química , Dióxido de Silício/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Células Hep G2 , Sorafenibe/farmacologia , Sorafenibe/química , Sorafenibe/farmacocinética , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Sementes/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Porosidade , Linhagem Celular Tumoral , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacosRESUMO
Melanoma is an aggressive skin cancer notorious for high levels of drug resistance. Additionally, current treatments such as immunotherapies are often associated with numerous adverse side effects. The use of nitric oxide (NO) may represent an attractive treatment for melanoma due to NO's various anticancer properties, unlikeliness to foster resistance, and limited toxicity toward healthy tissues. The anticancer effects of chemical NO donors have been explored previously but with limited understanding of the needed characteristics for exerting optimal antimelanoma activity. Herein, the in vitro therapeutic efficacy of three macromolecular NO donor systems (i.e., cyclodextrin, mesoporous silica nanoparticles, and hyaluronic acid) with tunable NO-release kinetics was explored by evaluating skin permeation along with toxicity against melanoma and healthy skin cells. Cytotoxicity against melanoma cells was dependent on NO payload and not donor identity or NO-release kinetics. In contrast, cytotoxicity against healthy cells was primarily influenced by the macromolecular NO donor, with cyclodextrin- and hyaluronic acid-based NO donors having the highest therapeutic indices. In vitro skin permeation was influenced by both the size and charge of the NO donor, with smaller, more neutral donors resulting in greater permeation. A Pluronic F127 organogel was optimized for the delivery of a cyclodextrin-based NO donor. Delivery of the NO donor in this manner resulted in increased in vitro skin permeation and reduced tumor growth in an in vivo model.
RESUMO
BACKGROUND: Therapeutic approaches that combine conventional photodynamic therapy (PDT) with gas therapy (GT) to sensitize PDT are an attractive strategy, but the molecular structure design of the complex lacks effective guiding strategies. RESULTS: Herein, we have developed a nanoplatforms Cy-NMNO@SiO2 based on mesoporous silica materials loaded NIR-activatable small-molecule fluorescent probe Cy-NMNO for the synergistic treatment of photodynamic therapy/gas therapy (PDT/GT) in antibacterial and skin cancer. The theoretical calculation results showed that the low dissociation of N-NO in Cy-NMNO enabled it to dissociate effectively under NIR light irradiation, which is conducive to produce Cy and NO. Cy showed better 1O2 generation performance than Cy-NMNO. The cytotoxicity of Cy-NMNO obtained via the synergistic effect of GT and PDT synergistically enhances the effect of photodynamic therapy, thus achieving more effective tumor treatment and sterilization than conventional PDT. Moreover, the nanoplatforms Cy-NMNO@SiO2 realized efficient drug loading and drug delivery. CONCLUSIONS: This work not only offers a promising approach for PDT-GT synergistic drug delivery system, but also provides a valuable reference for the design of its drug molecules.
Assuntos
Nanopartículas , Óxido Nítrico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Dióxido de Silício , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Humanos , Dióxido de Silício/química , Animais , Camundongos , Linhagem Celular Tumoral , Raios Infravermelhos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Cutâneas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB CRESUMO
Mesoporous silica offers an easy way to transform liquids into solids, due to their high loading capacity for liquid or dissolved active ingredients and the resulting enhanced dissolution properties. However, the compression of both unloaded and loaded mesoporous silica bulk material into tablets is challenging, due to poor/non-existing binding capacity. This becomes critical when high drug loads are to be achieved and the fraction of additional excipients in the final tablet formulation needs to be kept at a minimum. Our study aimed to investigate the mechanism of compression and tabletability dependent on the Liquid Load Level of the silica and type of filler/binder in binary tabletting mixtures. To this end, Vivapur® 101, FlowLac® 90, Pearlitol® 200 SD and tricalcium citrate tetrahydrate were selected and mixed with Syloid® XDP 3050 at various Liquid Load Levels. Compaction characteristics were analysed using the StylOne® Classic 105 ML compaction simulator. Additionally, the Overall Liquid Load (OLL) was defined as a new critical quality attribute for liquisolid tablets. The Overall Liquid Load allows straightforward, formulation-relevant comparisons between various fillers/binders, liquid components, and silica types. Results indicate strong binding capacity and high plasticity of the fillers/binders as key components for successful high liquid load silica tablet formulation. A volumetric combination of 30% Vivapur® 101 and 70% 0.75 mL/g loaded Syloid® XDP 3050 proved to be the most effective mixture, achieving an Overall Liquid Load of 36-41% [v/v] and maintaining a tensile strength of 1.5 N/mm2 with various liquid vehicles.
Assuntos
Composição de Medicamentos , Excipientes , Dióxido de Silício , Comprimidos , Comprimidos/química , Dióxido de Silício/química , Excipientes/química , Porosidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , SolubilidadeRESUMO
Phytophthora infestans-induced potato late blight is considered the "cancer of the potato crop." In this work, mesoporous silica nanoparticles (MSNs) with ultrahigh specific surface area (786.28 m2/g) were synthesized, which significantly inhibited P. infestans compared with some commercial fungicides. Moreover, MSNs inhibited the growth and reproductive of P. infestans processes, including germination, sporangia infection, and zoospore release. MSNs targeted key biological pathways and induced a stress response in the P. infestans, leading to reactive oxygen species (â¢O2-, â¢OH, and 1O2) production and structural damage of sporangia. Pot experiments showed that MSNs are translocated from leaves to roots of potato plants, enhancing physiological and biochemical processes, alleviating drought stress, improving resistance to pathogens, and exhibiting soil microbe-friendly. This study systematically reveals the mechanism of MSNs to weaken the reproduction process of P. infestans and confirm the safety and feasibility of MSNs as a green and sustainable fungicide.
Assuntos
Fungicidas Industriais , Nanopartículas , Phytophthora infestans , Doenças das Plantas , Dióxido de Silício , Solanum tuberosum , Solanum tuberosum/química , Solanum tuberosum/microbiologia , Solanum tuberosum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Dióxido de Silício/química , Nanopartículas/química , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Porosidade , Folhas de Planta/química , Folhas de Planta/microbiologia , Folhas de Planta/metabolismoRESUMO
In the past decade, cancer immunotherapy has revolutionized the field of oncology. Major immunotherapy approaches such as immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, cytokines, and immunomodulators have shown great promise in preclinical and clinical settings. Among them, immunomodulatory agents including cancer vaccines are particularly appealing; however, they face limitations, notably the absence of efficient and precise targeted delivery of immune-modulatory agents to specific immune cells and the potential for off-target toxicity. Nanomaterials can play a pivotal role in addressing targeting and other challenges in cancer immunotherapy. Dendritic mesoporous silica nanoparticles (DMSNs) can enhance the efficacy of cancer vaccines by enhancing the effective loading of immune modulatory agents owing to their tunable pore sizes. In this work, an emulsion-based method is optimized to customize the pore size of DMSNs and loaded DMSNs with ovalbumin (OVA) and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (CpG-OVA-DMSNs). The immunotherapeutic effect of DMSNs is achieved through controlled chemical release of OVA and CpG in antigen-presenting cells (APCs). The results demonstrated that CpG-OVA-DMSNs efficiently activated the immune response in APCs and reduced tumor growth in the murine B16-OVA tumor model.
RESUMO
Life-threatening systemic fungal infections caused by Candida albicans are significant contributors to clinical mortality, particularly among cancer patients and immunosuppressed individuals. The evasion of the immune response facilitated by fungal surface components enables fungal pathogens to evade macrophage attacks and to establish successful infections. This study developed a mesoporous silica nanoplatform, i.e., MSNP-EAP1Ab, which is composed of mesoporous silica nanoparticles grafted with the antibody of C. albicans surface adhesin Eap1. The activity of MSNP-EAP1Ab against C. albicans immune escape and infection was then evaluated by using the cell interaction model and the mouse systemic infection model. During interaction between C. albicans cells and macrophages, MSNP-EAP1Ab significantly inhibited fungal immune escape, leading to the enhanced phagocytosis of fungal cells by macrophages, with phagocytosis rates increasing from less than 8% to 14%. Furthermore, after treatment of the C. albicans-infected mice, MSNP-EAP1Ab drastically prolonged the mouse survival time and decreased the kidney fungal burden from >30,0000 CFU/g kidney to <100 CFU/g kidney, indicating the rapid recognition and killing of the pathogens by immune cells. Moreover, MSNP-EAP1Ab attenuated kidney tissue inflammation, with remarkable attenuation of renal immune cell accumulation. This study presents an innovative nanoplatform that targets the C. albicans adhesin, offering a promising approach for combatting systemic fungal infections.
Assuntos
Candida albicans , Candidíase , Nanopartículas , Dióxido de Silício , Animais , Nanopartículas/química , Dióxido de Silício/química , Camundongos , Candida albicans/imunologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/imunologia , Fagocitose/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Anticorpos Antifúngicos/imunologia , Evasão da Resposta Imune , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/químicaRESUMO
Introduction: RNA interference (RNAi) stands as a widely employed gene interference technology, with small interfering RNA (siRNA) emerging as a promising tool for cancer treatment. However, the inherent limitations of siRNA, such as easy degradation and low bioavailability, hamper its efficacy in cancer therapy. To address these challenges, this study focused on the development of a nanocarrier system (HLM-N@DOX/R) capable of delivering both siRNA and doxorubicin for the treatment of breast cancer. Methods: The study involved a comprehensive investigation into various characteristics of the nanocarrier, including shape, diameter, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), encapsulation efficiency, and drug loading. Subsequently, in vitro and in vivo studies were conducted on cytotoxicity, cellular uptake, cellular immunofluorescence, lysosome escape, and mouse tumor models to evaluate the efficacy of the nanocarrier in reversing tumor multidrug resistance and anti-tumor effects. Results: The results showed that HLM-N@DOX/R had a high encapsulation efficiency and drug loading capacity, and exhibited pH/redox dual responsive drug release characteristics. In vitro and in vivo studies showed that HLM-N@DOX/R inhibited the expression of P-gp by 80%, inhibited MDR tumor growth by 71% and eliminated P protein mediated multidrug resistance. Conclusion: In summary, HLM-N holds tremendous potential as an effective and targeted co-delivery system for DOX and P-gp siRNA, offering a promising strategy for overcoming MDR in breast cancer.
Assuntos
Neoplasias da Mama , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Lipossomos , RNA Interferente Pequeno , Animais , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Feminino , Lipossomos/química , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Células MCF-7 , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Liberação Controlada de Fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Temporomandibular joint osteoarthritis (TMJOA) is a commonly encountered degenerative joint disease in oral and maxillofacial surgery. Recent studies have shown that the excessive unbalanced activation of Wnt/ß-catenin signaling is connected with the pathogenesis of TMJOA and due to the inability to inhibit the over-activated Wnt pathway, while Wnt16-deficient mice has a more severe Knee OA. However, the efficacy of direct intra-TMJ injection of Wnt16 for the relief of TMJOA is still not directly confirmed. Moreover, small-molecule drugs such as Wnt16 usually exhibit short-lived efficacy and poor treatment adherence. Therefore, in order to obtain a stable release of Wnt16 both in the short and long term, this study fabricates a double-layer slow-release Wnt16 carrier based on mesoporous silica nanospheres (MSNs) encased within hyaluronic acid (HA) hydrogels. The biofunctional hydrogel HA/Wnt16@MSN is analyzed both in vitro and in vivo to evaluate the treatment of TMJOA. As a result, it shows superior pro-cartilage matrix restoration and inhibition of osteoclastogenesis ability, and effectively inhibits the over-activation of the Wnt/ß-catenin pathway. Taken together, biofunctional hydrogel HA/Wnt16@MSN is a promising candidate for the treatment of TMJOA.
RESUMO
This review discusses the relationship between inflammation and cancer initiation and progression, which has prompted research into anti-inflammatory approaches for cancer prevention and treatment. Specifically, it focuses on the use of inflammation-reducing agents to enhance the effectiveness of tumor treatment methods. These agents are combined with platinum(II)-based antitumor drugs to create multifunctional platinum(IV) prodrugs, allowing for simultaneous delivery to tumor cells in a specific ratio. Once inside the cells and subjected to intracellular reduction, both components can act in parallel through distinct pathways. Motivated by the objective of reducing the systemic toxicity associated with contemporary chemotherapy, and with the aim of leveraging the passive enhanced permeability and retention effect exhibited by nanostructured materials to improve their accumulation within tumor tissues, the platinum(IV) complexes have been efficiently loaded into mesoporous silica SBA-15 material. The resulting nanostructured materials are capable of providing controlled release of the conjugates when subjected to simulated plasma conditions. This feature suggests the potential for extended circulation within the body in vivo, with minimal premature release of the drug before reaching the intended target site. The primary emphasis of this review is on research that integrates these two approaches to develop chemotherapeutic treatments that are both more efficient and less harmful.
Assuntos
Anti-Inflamatórios , Antineoplásicos , Portadores de Fármacos , Nanoestruturas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Animais , Porosidade , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: Bufalin (BA) is a potent traditional Chinese medicine derived from toad venom. It has shown significant antitumor activity, but its use is limited by cardiotoxicity, which necessitates innovative delivery methods, such as rod-shaped mesoporous silica nanoparticles (rMSNs). rMSNs have been extensively employed for reducing drug toxicity and for controlled or targeted drug delivery in tumor therapy. However, their potential in delivering BA has not been completely elucidated. Therefore, in this study, BA-loaded rMSNs (BA-rMSNs) were developed to investigate their potential and mechanism in impairing colon cancer cells. METHODS: rMSNs were developed via the solâgel method. Drug encapsulation efficiency and loading capacity were determined to investigate the advantages of the rMSN in loading BA. The antiproliferative activities of the BA-rMSNs were investigated via 5-ethynyl-2'-deoxyuridine and CCK-8. To evaluate cell death, Annexin V-APC/PI apoptotic and calcein-AM/PI double staining were performed. Western blotting, oil red O staining, and Nile red solution were employed to determine the ability of BA-rMSNs to regulate lipophagy. RESULTS: The diameter of the BA-rMSNs was approximately 60 nm. In vitro studies demonstrated that BA-rMSNs markedly inhibited HCT 116 and HT-29 cell proliferation and induced cell death. In vivo studies revealed that BA-rMSNs reduced BA-mediated cardiotoxicity and enhanced BA tumor targeting. Mechanistic studies revealed that BA-rMSNs blocked lipophagy. CONCLUSIONS: rMSNs reduced BA-mediated cardiotoxicity and impaired the growth of colon cancer cells. Mechanistically, antitumor activity depends on lipophagy.
Assuntos
Bufanolídeos , Cardiotoxicidade , Neoplasias do Colo , Nanopartículas , Dióxido de Silício , Humanos , Bufanolídeos/farmacologia , Bufanolídeos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Dióxido de Silício/química , Animais , Nanopartículas/química , Cardiotoxicidade/prevenção & controle , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Células HT29 , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Multi-aptamer recognition of breast cancer cells (MCF-7) is utilized to achieve high specificity. The method comprises two parts, aptamer-functionalized mesoporous silica nanoparticles (MSNs) loaded with dissimilar dyes (thymolphthalein or curcumin) as signal transducers and aptamer-modified magnetic beads (MBs) as capture agents, which worked together to detect MCF-7 cells sensitively and accurately. The results indicated that the aptasensor has a linear detection range of 100 to 4000 cells and a detection threshold of 10 cells/mL. The method had been successfully employed to detect breast cancer cells in real blood samples to distinguish between breast cancer patients and healthy individuals. In conclusion, the development of the multi-aptamer-based colorimetric sensor offered a novel method for the highly selective detection of MCF-7 cells, contributing to the accurate identification of breast cancer.
Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Nanopartículas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Aptâmeros de Nucleotídeos/química , Neoplasias da Mama/sangue , Células MCF-7 , Nanopartículas/química , Porosidade , Feminino , Curcumina/química , Corantes/química , Colorimetria/métodos , Técnicas Biossensoriais/métodos , Limite de DetecçãoRESUMO
Multi drug resistance (MDR) in breast carcinoma still poses a significant impairment to successful chemotherapy. As the arsenal of anticancer agents increases with improved preclinical methods, the growth of therapeutic drug combinations is now unprecedented. The malignancies addressed by mono drugs often fail to limit cancer progression, resulting in resistant cancer, thereby offering combinatorial therapies a terrific edge over monodrug regimes. However, the selection of drug combinations required enough preliminary evidence for their synergistic effect. The fundamental mechanisms of MDR to chemotherapeutics are associated with the overexpression of membrane efflux pumps, alternations in drug targets, and increased drug metabolism. Unfortunately, it is very difficult for drugs to overcome resistance produced on their own or by another different drug action. In this context, herein, we report a simple delivery system for coencapsulation and intracellular codelivery of dual-drug thymoquinone (TQ) and doxorubicin (DOX) to resensitize DOX-resistant MDA MB231 cell line (231 R). The 231 R cell line developed in our lab showed an enhanced expression of the ATP-binding cassette (ABC) transporters P-gp1/MDR-1 and a declined miR-298 expression. The present delivery system is based on amine-functionalized mesoporous silica nanoparticles (MSNs), in which the side chain amine functional group was used to react with the carbonyl group of TQ, which acts as a pro-drug system (TQ-MSN) to release TQ and DOX simultaneously. DOX was encapsulated later into the above TQ-MSN by a simple diffusion method. The drugs containing MSNs were further coated with a hyaluronic acid-conjugated PEG-PLGA polymer (HA@TQ-DOX-MSN). This simple nanostrategy interferes with the MDR-1/miR-298 cross-talk, thereby allowing a significant reduction in drug efflux from the cell and highlighting a promising nanotechnology-based combinatorial delivery approach in managing breast cancer chemoresistance.
Assuntos
Benzoquinonas , Neoplasias da Mama , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Nanopartículas , Dióxido de Silício , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Dióxido de Silício/química , MicroRNAs/metabolismo , Benzoquinonas/farmacologia , Benzoquinonas/química , Benzoquinonas/administração & dosagem , Feminino , Nanopartículas/química , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Porosidade , Portadores de Fármacos/química , AnimaisRESUMO
Since the available treatments are not highly effective to combat cancer, therefore, the alternative strategies are unavoidable. Photodynamic therapy (PDT) is one of the emerging approaches which is target specific and minimally invasive. This study explores the successful development of Poly (D,L-lactide-co-glycolide) (PLGA) coated mesoporous silica nanoparticles (MSNs) and their augmented effects achieved by integrating curcumin (Cur) and cetyltrimethylammonium bromide (CTAB) in the polymeric layer and silica's pores, respectively. The synthesized nanocarriers (Cur-PLGA-cMSNs) have shown preferential targeting to the cellular organelles facilitated by CTAB's and Cur's affinity to mitochondria. CTAB and Cur-based PDT induced oxidative stress and generation of reactive oxygen species (ROS), resulting in dysfunctional mitochondria and triggered apoptotic pathways. PLGA coating has produced multifunctional effects, including; gatekeeping effects at pore openings, providing an extra loading site, enhancing the hemocompatibility of MSNs, and masking the free cur-related prolonged coagulation time. Cur-PLGA-cMSNs, as a multifaceted and combative approach with synergistic effects demonstrate promising potential to enhance outcomes in cancer treatment.
Assuntos
Curcumina , Portadores de Fármacos , Nanopartículas , Fotoquimioterapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Dióxido de Silício , Dióxido de Silício/química , Fotoquimioterapia/métodos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacologia , Humanos , Porosidade , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Cetrimônio/química , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , AnimaisRESUMO
Dendritic cells (DCs) within the tumor microenvironment (TME) have an insufficient capacity to activate T cells through antigen presentation. Furthermore, the programmed cell-death ligand 1 (PD-L1), abundantly expressed on tumor-associated DCs, binds the programmed cell-death 1 (PD-1)-positive T cells and suppresses their immune function. The binding of PD-L1 to CD80 (B7.1) on the same DC via cis-interactions further prevents T cell costimulation through CD28. Here, we present a strategy to simultaneously promote antigen cross-presentation and block the inhibitory interactions of PD-L1 on DCs to amplify T cell-mediated antitumor responses within the TME. Mesoporous silica nanoparticles (MSNPs) were loaded with clotrimazole (CLT) to boost MHC II-mediated antigen presentation by DCs, surface-modified with mannose to target CD206 on DCs, and then decorated with PD-L1 binding peptide (PDL1bp) to block PD-L1-mediated interactions. PDL1bp was cleaved from the mannosylated and CLT-loaded MSNPs (MSNP-MaN/CLT) under conditions simulating the TME and tethered to PD-L1 to reverse CD80 sequestration on DC2.4 cells. The blocking of PD-L1 by PDL1bp-decorated NPs (MSNP-MaN-PDL1bp) increased the cellular interactions between DC2.4 and EL4 T cells and the amount of IL-2 secretion. The MSNP-MaN/CLT were taken up rapidly by DC2.4 cells, promoted MHC II presentation of hen egg lysozyme (HEL), and increased IL-2 production from HEL antigen-primed 3A9 T cells, which was further enhanced by PDL1bp. In vivo investigation revealed that administration of the CLT-loaded and PDL1bp-functionalized MSNPs remarkably inhibited subcutaneous B16-F10 melanoma tumor growth when compared with anti-PD-L1 therapy. MSNP-MaN-PDL1bp/CLT treatment upregulated the levels of effector molecules such as granzyme B and proinflammatory cytokines (IFNγ and INFα) in the tumor tissue, indicating antitumoral T cell responses. This strategy of utilizing nanoparticles to trigger DC activation while promoting T cell stimulation can be used to amplify the antitumor T cell responses and represents a promising alternative to anti-PD-L1 immunotherapy.