Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 22111, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333605

RESUMO

Lactoferrin is a natural multifunctional glycoprotein with potential antidepressant-like effects. However, the mechanism of its antidepressant effect has not been explored from the perspective of gut flora metabolism. Therefore, we employed both 16S rDNA gene sequencing and LC-MS metabolomics analysis to investigate the regulatory effects and mechanisms of lactoferrin in a rat model of depression. After one week of acclimatization, twenty-four 7-week-old male Sprague-Dawley rats were randomly and equally assigned into three groups: the control group, the model group, and the lactoferrin intervention group. The control group rats were housed under standard conditions, while the rats in the model and lactoferrin intervention groups were individually housed and exposed to chronic unpredictable mild stress for 44 days simultaneously. The lactoferrin intervention group was provided with water containing 2% lactoferrin (2 g/100 ml). Behavioural tests were conducted at week 7. Upon completion of the behavioral tests, the rats were anesthetized with isoflurane, humanely euthanized using a rat guillotine, and tissue samples were collected for further experiments. The results indicated that lactoferrin intervention led to an increase in sucrose solution consumption, horizontal movement distance, number of cross platforms, and residence time in the target quadrant. Additionally, it resulted in an increase in jejunal tight junction protein ZO-1 expression and a suppression of serum expression of inflammatory factors, Lipopolysaccharide and Diamine oxidase. In summary, lactoferrin can regulate the metabolic disorder of intestinal flora, reduce intestinal permeability, and further regulate the metabolic balance of hippocampal tissues through the microbiota-gut-brain axis. This process ultimately alleviates the depression-like behavior in rats.


Assuntos
Depressão , Lactoferrina , Metabolômica , Ratos Sprague-Dawley , Animais , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Masculino , Depressão/metabolismo , Depressão/tratamento farmacológico , Ratos , Metabolômica/métodos , Cromatografia Líquida/métodos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , DNA Ribossômico/genética , Hipocampo/metabolismo , Espectrometria de Massas , Espectrometria de Massa com Cromatografia Líquida
2.
Neurobiol Dis ; 200: 106627, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111702

RESUMO

An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.


Assuntos
Eixo Encéfalo-Intestino , Transtorno Depressivo , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/terapia , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Animais , Encéfalo/metabolismo , Complicações Pós-Operatórias/microbiologia
3.
Front Cell Dev Biol ; 12: 1410732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040041

RESUMO

Ischemic stroke is a significant global cause of death and disability. Currently, treatment options for acute ischemic stroke are limited to intravenous thrombolysis and mechanical recanalization. Therefore, novel neuroprotective strategies are imperative. Stem cell transplantation possesses the capabilities of differentiation, proliferation, neuronal replacement, nerve pathway reconstruction, secretion of nerve growth factors, and enhancement of the microenvironment; thus, it is a potential therapeutic approach for ischemic stroke. In addition, the immunomodulatory function of stem cells and the combined treatment of stem cells and exosomes exhibit a favorable protective effect on brain injury and neurological dysfunction following stroke. Meanwhile, the theory of microbiota-gut-brain axis provides us with a novel perspective for comprehending and managing neurological diseases. Lastly, stem cell transplantation has demonstrated promising outcomes not only in treating ischemic stroke but also in dealing with other neurological disorders, such as brain tumors. Furthermore, challenges related to the tissue source, delivery method, immune response, and timing of transplantation still need to be addressed to optimize the treatment.

4.
Ageing Res Rev ; 99: 102399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955263

RESUMO

Helicobacter pylori, a type of gram-negative bacterium, infects roughly half of the global population. It is strongly associated with gastrointestinal disorders like gastric cancer, peptic ulcers, and chronic gastritis. Moreover, numerous studies have linked this bacterium to various extra-gastric conditions, including hematologic, cardiovascular, and neurological issues. Specifically, research has shown that Helicobacter pylori interacts with the brain through the microbiota-gut-brain axis, thereby increasing the risk of neurological disorders. The inflammatory mediators released by Helicobacter pylori-induced chronic gastritis may disrupt the function of the blood-brain barrier by interfering with the transmission or direct action of neurotransmitters. This article examines the correlation between Helicobacter pylori and a range of conditions, such as hyperhomocysteinemia, schizophrenia, Alzheimer's disease, Parkinson's disease, ischemic stroke, multiple sclerosis, migraine, and Guillain-Barré syndrome.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Doenças do Sistema Nervoso , Humanos , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Doenças do Sistema Nervoso/microbiologia , Animais , Microbioma Gastrointestinal/fisiologia
5.
Front Pharmacol ; 15: 1415844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966558

RESUMO

Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, ß-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.

6.
Phytomedicine ; 129: 155510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696921

RESUMO

BACKGROUND: Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE: This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS: Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS: LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION: The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.


Assuntos
Antidepressivos , Eixo Encéfalo-Intestino , Depressão , Microbioma Gastrointestinal , Glucosídeos , Doenças Neuroinflamatórias , Fenóis , Rehmannia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Rehmannia/química , Glucosídeos/farmacologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Depressão/tratamento farmacológico , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Antidepressivos/farmacologia , Fenóis/farmacologia , Camundongos , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Permeabilidade , Ratos , Encéfalo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Função da Barreira Intestinal , Polifenóis
7.
CNS Neurosci Ther ; 30(4): e14519, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37905694

RESUMO

BACKGROUND: The microbiota-gut-brain axis plays a critical role in neuropsychiatric disorders, particularly anxious depression, and attracts more attention gradually. Zhi Zi Chi decoction (ZZCD) consisting of Gardenia jasminoides J. Ellis and Glycine max (L.) Merr, is a classic formula in clinic and widely applied in anxiety and depression treatment. However, the underlying mechanisms of regulating microbiota-gut-brain axis in the treatment of anxious depression by oral administration of ZZCD remain elusive. MATERIALS AND METHODS: In this project, we clarified the origin and preparation methods of the Gardenia jasminoides J. Ellis and Glycine max (L.) Merr and examined the chemical ingredients of ZZCD by liquid chromatograph mass spectrometer. Then, corticosterone combined with chronic restraint stress was applied to establish an anxious depression model. After treated with ZZCD standard decoction, based on enzyme-linked immunosorbent assay (ELISA), 16S rRNA technology, high-throughput sequencing, quantitative RT-PCR and fecal microbiota transplantation (FMT), the multiple associations between nucleus accumbens and intestinal flora in anxious depression mice were determined to clarify the mechanism of ZZCD in the treatment of anxiety and depression disorder. RESULTS: We found various substances with antidepressant and antianxiety properties in ZZCD such as rosiridin and oleanolic acid. ZZCD could alleviate depressive and anxiety behaviors in anxious depression mice via regulating the disturbance of gut microbiota. Meanwhile, the bioactive compounds of ZZCD might directly active on neurodevelopment and neuroimmune-related genes. Furthermore, the secretion of prolactin and estrogen, and interfering with mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF) signaling pathways were mainly involved in the multi-target therapeutic effects of ZZCD against anxiety and depression. CONCLUSIONS: These findings suggested that ZZCD exerts antidepressant effects pleiotropically through modulating the microbiota-gut-brain.


Assuntos
Medicamentos de Ervas Chinesas , Gardenia , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Gardenia/química , Corticosterona , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Eixo Encéfalo-Intestino , RNA Ribossômico 16S , Sementes/química , Antidepressivos
8.
Front Microbiol ; 14: 1278162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075901

RESUMO

Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders, with an increasing incidence. Gastrointestinal symptoms are common comorbidities of ASD. The gut microbiota composition of children with autism is distinct from that of typical developmental (TD) children, suggesting that the gut microbiota probably influences on hosts via the microbiota-gut-brain axis. However, the relationship between intestinal dysbiosis and host brain function remains unclear. In this study, we creatively developed a honeybee model and investigated the potential effects of fecal microbiota on hosts. Fecal microbiota from children with autism and TD children were transplanted into microbiota-free honeybees (Apis mellifera), resulting in induced ASD-fecal microbiota transplantation (FMT) honeybees (A-BEE group) and TD-FMT honeybees (T-BEE group), respectively. We found that cognitive abilities of honeybees in the A-BEE group were significantly impaired in olfactory proboscis extension response conditioning. Metagenomics was used to evaluate fecal microbiota colonization, revealing several differential species responsible for altered tryptophan metabolism and taurine metabolism within the bee gut, including Bacteroides dorei, Bacteroides fragilis, Lactobacillus gasseri, and Lactobacillus paragasseri. Furthermore, fecal microbiota from children with autism downregulated brain genes involved in neural signaling and synaptic transmission within honeybees. Notably, differentially spliced genes observed within brains of honeybees from the A-BEE group largely overlapped with those identified in human diagnosed with autism via SFARI and SPARK gene sets. These differentially spliced genes were also enriched within pathways related to neural synaptic transmission. Our findings provide novel insights into the pivotal role of the human gut microbiota, which may contribute to neurological processes in honeybees. Additionally, we present a few research sources on gut-brain connections in ASD.

9.
Cureus ; 15(11): e49339, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38143595

RESUMO

Obesity, a widespread health concern characterized by the excessive accumulation of body fat, is a complex condition influenced by genetics, environment, and social determinants. Recent research has increasingly focused on the role of gut microbiota in obesity, highlighting its pivotal involvement in various metabolic processes. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, interacts with the host in a myriad of ways, impacting energy metabolism, appetite regulation, inflammation, and the gut-brain axis. Dietary choices significantly shape the gut microbiota, with diets high in fat and carbohydrates promoting the growth of harmful bacteria while reducing beneficial microbes. Lifestyle factors, like physical activity and smoking, also influence gut microbiota composition. Antibiotics and medications can disrupt microbial diversity, potentially contributing to obesity. Early-life experiences, including maternal obesity during pregnancy, play a vital role in the developmental origins of obesity. Therapeutic interventions targeting the gut microbiota, including prebiotics, probiotics, fecal microbiota transplantation, bacterial consortium therapy, and precision nutrition, offer promising avenues for reshaping the gut microbiota and positively influencing weight regulation and metabolic health. Clinical applications of microbiota-based therapies are on the horizon, with potential implications for personalized treatments and condition-based interventions. Emerging technologies, such as next-generation sequencing and advanced bioinformatics, empower researchers to identify specific target species for microbiota-based therapeutics, opening new possibilities in healthcare. Despite the promising outlook, microbiota-based therapies face challenges related to microbial selection, safety, and regulatory issues. However, with ongoing research and advances in the field, these challenges can be addressed to unlock the full potential of microbiota-based interventions.

10.
J Agric Food Chem ; 71(49): 19622-19637, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014964

RESUMO

A variety of active factors in milk and foods have been proven to serve as microbial nutrients that regulate the formation of early gut microbiota (GM), thereby ensuring the healthy development of infants. This study demonstrated that dietary nucleotides (NTs), one of the main nitrogen-containing substances in human milk, promoted the neurodevelopment of neonatal rats and the expression of Sox2, Dcx, Tuj1, and NeuN in the prefrontal cortex and hippocampus, but had no significant regulatory effects in the striatum. 16s rRNA sequencing and metabolomics of the colon contents of neonatal rats at different developmental stages showed that the early intake of NTs promoted an increase in the abundance of beneficial microorganisms related to neurodevelopment, digestion, and gut absorption, such as g_Romboutsia and g_Akkermansia. Changes in the ability of the GM to regulate folate synthesis, riboflavin metabolism, and other processes were also observed. Further analysis revealed significant correlations between the level of characteristic metabolites, namely, trans-3-indoleacrylic acid, urocanic acid, inosine, and adenosine, in the gut with neurodevelopment and characteristic GM components. These findings suggest that NTs in milk may affect neurodevelopment and maturation in early life by regulating the GM composition-gut-brain axis.


Assuntos
Microbioma Gastrointestinal , Ratos , Humanos , Animais , Eixo Encéfalo-Intestino , Animais Recém-Nascidos , Nucleotídeos , RNA Ribossômico 16S/genética , Leite Humano
11.
Cell Metab ; 35(11): 2011-2027.e7, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37794596

RESUMO

Overeating disorders (ODs), usually stemming from dieting history and stress, remain a pervasive issue in contemporary society, with the pathological mechanisms largely unresolved. Here, we show that alterations in intestinal microbiota are responsible for the excessive intake of palatable foods in OD mice and patients with bulimia nervosa (BN). Stress combined with a history of dieting causes significant changes in the microbiota and the intestinal metabolism, which disinhibit the vagus nerve terminals in the gut and thereby lead to a subsequent hyperactivation of the gut-brain axis passing through the vagus, the solitary tract nucleus, and the paraventricular nucleus of the thalamus. The transplantation of a probiotic Faecalibacterium prausnitzii or dietary supplement of key metabolites restores the activity of the gut-to-brain pathway and thereby alleviates the OD symptoms. Thus, our study delineates how the microbiota-gut-brain axis mediates energy balance, unveils the underlying pathogenesis of the OD, and provides potential therapeutic strategies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Hiperfagia/metabolismo
12.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686320

RESUMO

Fungal pathogens of the Cryptococcus neoformans species complex (C. neoformans SC) are a major cause of fungal meningitis in immunocompromised individuals. As with other melanotic microorganisms associated with human diseases, the cell-wall-associated melanin of C. neoformans SC is a major virulence factor that contributes to its ability to evade host immune responses. The levels of melanin substrate and the regulation of melanin formation could be influenced by the microbiota-gut-brain axis. Moreover, recent studies show that C. neoformans infections cause dysbiosis in the human gut microbiome. In this review, we discuss the potential association between cryptococcal meningitis and the gut microbiome. Additionally, the significant potential of targeting the gut microbiome in the diagnosis and treatment of this debilitating disease is emphasized.


Assuntos
Criptococose , Cryptococcus neoformans , Microbioma Gastrointestinal , Meningite Criptocócica , Humanos , Melaninas , Eixo Encéfalo-Intestino
13.
Nutrients ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630732

RESUMO

The microbiota gut-brain axis (mGBA) is an important contributor to mental health and neurological and mood disorders. Lipopolysaccharides (LPS) are endotoxins that are components of Gram-negative bacteria cell walls and have been widely shown to induce both systemic and neuro-inflammation. Flaxseed (Linum usitatissimum) is an oilseed rich in fibre, n3-poly-unsaturated fatty acid (alpha-linolenic acid (ALA)), and lignan, secoisolariciresinol diglucoside, which all can induce beneficial effects across varying aspects of the mGBA. The objective of this study was to determine the potential for dietary supplementation with flaxseed or flaxseed oil to attenuate LPS-induced inflammation through modulation of the mGBA. In this study, 72 5-week-old male C57Bl/6 mice were fed one of three isocaloric diets for 3 weeks: (1) AIN-93G basal diet (BD), (2) BD + 10% flaxseed (FS), or (3) BD + 4% FS oil (FO). Mice were then injected with LPS (1 mg/kg i.p) or saline (n = 12/group) and samples were collected 24 h post-injection. Dietary supplementation with FS, but not FO, partially attenuated LPS-induced systemic (serum TNF-α and IL-10) and neuro-inflammation (hippocampal and/or medial prefrontal cortex IL-10, TNF-α, IL-1ß mRNA expression), but had no effect on sickness and nest-building behaviours. FS-fed mice had enhanced fecal microbial diversity with increased relative abundance of beneficial microbial groups (i.e., Lachnospiraceae, Bifidobacterium, Coriobacteriaceae), reduced Akkermansia muciniphila, and increased production of short-chain fatty acids (SCFAs), which may play a role in its anti-inflammatory response. Overall, this study highlights the potential for flaxseed to attenuate LPS-induced inflammation, in part through modulation of the intestinal microbiota, an effect which may not be solely driven by its ALA-rich oil component.


Assuntos
Linho , Microbioma Gastrointestinal , Masculino , Animais , Camundongos , Óleo de Semente do Linho/farmacologia , Lipopolissacarídeos , Interleucina-10 , Eixo Encéfalo-Intestino , Fator de Necrose Tumoral alfa , Dieta
14.
J Biomol Struct Dyn ; : 1-16, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632305

RESUMO

Danzhi-xiaoyao-San (DZXYS), a Traditional Chinese Medicine, plays an essential role in the clinical treatment of depression, but its mechanisms in humans remain unclear. To investigate its pharmacological effects and mechanisms as an add-on therapy for depression, we conducted a double-blind, placebo-controlled trial with depressed patients receiving selective serotonin reuptake inhibitors (SSRIs). Serum and fecal samples were collected for metabolomic and microbiome analysis using UHPLC-QTRAP-MS/MS and 16S rRNA gene sequencing technologies, respectively. Depression symptoms were assessed using the 24-item Hamilton Depression Scale. We employed network pharmacology, metabolomics, and molecular docking to identify potential targets associated with DZXYS. We also examined the correlation between gut microbes and metabolites to understand how DZXYS affects the microbiota-gut-brain axis. The results showed that DZXYS combined with SSRIs was more effective than SSRIs alone in improving depression. We identified 39 differential metabolites associated with DZXYS treatment and found seven upregulated metabolic pathways. The active ingredients quercetin and luteolin were docked to targets (AVPR2, EGFR, F2, and CDK6) associated with the enriched pathways 'pancreatic cancer' and 'phospholipase D signaling pathway', which included the metabolite lysophosphatidic acid [LPA(0:0/16:0)]. Additionally, we identified 32 differential gut microbiota species related to DZXYS treatment, with Bacteroides coprophilus and Ruminococcus gnavus showing negative correlations with specific metabolites such as L-2-aminobutyric acid and LPA(0:0/16:0). Our findings indicate that DZXYS's antidepressant mechanisms involve multiple targets, pathways, and the regulation of LPA and the microbiota-gut-brain axis. These insights from our systems pharmacology analysis contribute to a better understanding of DZXYS's potential pharmacological mechanisms in depression treatment.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSThis study presents a double-blind, randomized, placebo-controlled clinical trial comparing the clinical effects of Danzhi-xiaoyao-San (DZXYS) plus selective serotonin reuptake inhibitors (SSRIs) and SSRIs alone.This study is the first system pharmacology approach to integrate multi-omics and network pharmacology and examine the clinical pharmacological mechanisms of DZXYS as an add-on therapy for depression.This study highlights that regulation of lysophosphatidic acid (LPA) and the microbiota-gut-brain axis by DZXYS plays an essential role in its antidepressant mechanisms.

15.
Neurosci Lett ; 814: 137460, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37619699

RESUMO

Growing evidence suggests that probiotics can ameliorate depression by regulating the microbiota-gut-brain axis. However, the mechanism of action of probiotics in depressive disorders remains incompletely understood. This study aimed to investigate the effect of Lacticaseibacillus rhamnosus TF318 in a corticosterone (CORT)-induced rat model of depression. The sucrose preference test (SPT) and Morris water maze (MWM) test showed that oral administration of L. rhamnosus TF318 for 21 d significantly prevented depressive behaviors. Administration of L. rhamnosus TF318 resulted in lower hippocampal levels of adrenocorticotropic hormone and corticotropin-releasing factor and serum levels of CORT and restoration of hippocampal levels of 5-hydroxytryptamine, dopamine, and norepinephrine. A marked increase was observed in the hippocampal concentration of brain-derived neurotrophic factor (BDNF), a change that may have involved the cyclic adenosine monophosphate (cAMP)/cAMP response element-binding (CREB)/BDNF signaling pathway. Treatment with L. rhamnosus TF318 corrected CORT-induced abnormalities in the gut microbiota, significantly increasing the relative abundance of Firmicutes. In conclusion, supplementation with L. rhamnosus TF318 prevented CORT-induced depressive behaviors by upregulating BDNF expression and modulating gut microbiota, suggesting that this strain has the potential as a novel probiotic with antidepressant effects.


Assuntos
Depressão , Lacticaseibacillus rhamnosus , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lacticaseibacillus , Antidepressivos/farmacologia , Hipocampo/metabolismo
16.
Biomedicines ; 11(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37371796

RESUMO

Fibromyalgia (FM) is a serious chronic pain syndrome, characterised by muscle and joint stiffness, insomnia, fatigue, mood disorders, cognitive dysfunction, anxiety, depression and intestinal irritability. Irritable Bowel Syndrome (IBS) shares many of these symptoms, and FM and IBS frequently co-exist, which suggests a common aetiology for the two diseases. The exact physiopathological mechanisms underlying both FM and IBS onset are unknown. Researchers have investigated many possible causes, including alterations in gut microbiota, which contain billions of microorganisms in the human digestive tract. The gut-brain axis has been proven to be the link between the gut microbiota and the central nervous system, which can then control the gut microbiota composition. In this review, we will discuss the similarities between FM and IBS. Particularly, we will focus our attention on symptomatology overlap between FM and IBS as well as the similarities in microbiota composition between FM and IBS patients. We will also briefly discuss the potential therapeutic approaches based on microbiota manipulations that are successfully used in IBS and could be employed also in FM patients to relieve pain, ameliorate the rehabilitation outcome, psychological distress and intestinal symptoms.

17.
Appl Microbiol Biotechnol ; 107(16): 5161-5178, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389589

RESUMO

Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.


Assuntos
Kefir , Microbiota , Camundongos , Animais , Kefir/microbiologia , Leite/metabolismo , Antioxidantes , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Encéfalo/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-37365420

RESUMO

Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1ß, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.

19.
Ecotoxicol Environ Saf ; 259: 115041, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224780

RESUMO

2,2',4,4'-tetrabromodiphenyl ether (BDE47) is a foodborne environmental risk factor for depression, but the pathogenic mechanism has yet to be fully characterized. In this study, we clarified the effect of BDE47 on depression in mice. The abnormal regulation of the microbiome-gut-brain axis is evidenced closely associated with the development of depression. Using RNA sequencing, metabolomics, and 16s rDNA amplicon sequencing, the role of the microbiome-gut-brain axis in depression was also explored. The results showed that BDE47 exposure increased depression-like behaviors in mice but inhibited the learning memory ability of mice. The RNA sequencing analysis showed that BDE47 exposure disrupted dopamine transmission in the brain of mice. Meanwhile, BDE47 exposure reduced protein levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT), activated astrocytes and microglia cells, and increased protein levels of NLRP3, IL-6, IL-1ß, and TNF-α in the brain of mice. The 16 s rDNA sequencing analysis showed that BDE47 exposure disrupted microbiota communities in the intestinal contents of mice, and faecalibaculum was the most increased genus. Moreover, BDE47 exposure increased the levels of IL-6, IL-1ß, and TNF-α in the colon and serum of mice but decreased the levels of tight junction protein ZO-1 and Occludin in the colon and brain of mice. In addition, the metabolomic analysis revealed that BDE47 exposure induced metabolic disorders of arachidonic acid and neurotransmitter 2-Arachidonoyl glycerol (2-AG) was one of the most decreased metabolites. Correlation analysis further revealed gut microbial dysbiosis, particularly faecalibaculum, is associated with altered gut metabolites and serum cytokines in response to BDE47 exposure. Our results suggest that BDE47 might induce depression-like behavior in mice through gut microbial dysbiosis. The mechanism might be associated with the inhibited 2-AG signaling and increased inflammatory signaling in the gut-brain axis.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Camundongos , Animais , Depressão/induzido quimicamente , Glicerol/farmacologia , Fator de Necrose Tumoral alfa , Disbiose/metabolismo , Interleucina-6 , Multiômica , Camundongos Endogâmicos C57BL
20.
Pharmacol Res ; 193: 106787, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224894

RESUMO

Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA.


Assuntos
Doença de Parkinson , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Eixo Encéfalo-Intestino , Doença de Parkinson/metabolismo , Antiparkinsonianos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA