Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 417: 135927, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933429

RESUMO

The potential contribution of Arabic gum to wine astringency was discussed in this study. Two universally used Arabic gum (concentration of 0.2-1.2 g/L) were investigated in model wine based on the polyphenol fractions (phenolic acids, monomeric/oligomeric, and polymeric procyanidin) and protein interaction system. Both physicochemical analyses and sensory evaluation revealed that the modulation of Arabic gum on astringency was affected by the structural properties and concentration of Arabic gum and polyphenolic fractions. Arabic gum at 0.2 g/L appeared as the optimal dose to reduce astringency compared to 0.6 and 1.2 g/L. It inhibited astringency induced by polymeric procyanidin more than that of oligomeric procyanidins and phenolic acids mainly by forming soluble ternary complexes with polyphenols and proteins, and preferentially binding proteins/polyphenols to decrease polyphenol-protein reactions. Arabic gum also inhibited the self-aggregation of polyphenols, exhibiting more binding sites when its higher molecular weight and more/longer branches, leading to competition with polyphenols for bind proteins.


Assuntos
Polifenóis , Vinho , Polifenóis/análise , Vinho/análise , Adstringentes/análise , Hidroxibenzoatos/análise , Goma Arábica
2.
Food Chem ; 414: 135673, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821921

RESUMO

Contribution of various phenols on wine astringency profiles was far from clear explanations. To effectively describe wine astringency profiles and determined the function of tannins/matrix (pH and ethanol), multiple chemical analyses combined RATA (Rate-all-that-apply) sensory method were applied in Cabernet Sauvignon and model wines. Results showed that polymeric flavanols determined the bulk of wine astringency intensity, oligomeric tannins enriched the smoothness and periodontium astringency, and monomeric phenol enhanced overall astringency intensity through synergistic effect. Astringency balance was effectively quantification, and its potential correlation relationship with epicatechin extension subunit (0.83) and fluorescence peak shift (0.75) cannot be ignored. The astringency profiles of condensed tannins with anthocyanins were enhanced. Low-pH (from 3.8 to 3.0) enhanced astringency by increasing the tannins affinity to proteins, while ethanol (from 10.0 % âˆ¼ 15.0 %) decreased the hydrophobicity bond between tannins-protein interaction. This paper provided new insights to explain wine astringency profiles and a reference for astringency modification during winemaking.


Assuntos
Proantocianidinas , Vitis , Taninos/química , Adstringentes/análise , Antocianinas , Polifenóis , Fenóis/análise , Vitis/química
3.
Food Chem ; 403: 134385, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174337

RESUMO

Previous studies acknowledged that tartaric acid-imparted low-pH contributed to the enhancement of astringency, but in-depth studies are lacking and the underlying mechanisms are not clearly understood. This work introduced new insight into the effect of tartaric acid on astringency perception from the perspectives of complex formation, protein secondary structure, chemical bond type and salivary layer fluidity by establishing models using proteins (α-amylase, salivary proteins) and tannic acid. Results demonstrated that tartaric acid affects wine astringency by two mechanisms: a) Tartaric acid compound directly affects the wine astringency by forming ternary complexes and causing the protein structure to stretch by changing the hydrogen bond and hydrophobic bond between protein-polyphenol complexes. b) pH affected astringency by increasing the fluidity of the salivary layer rather than increasing the consumption of the salivary layer. The findings provide valuable information to the wine industry to regulate wine astringency by the management of tartaric acid.


Assuntos
Adstringentes , Vinho , Adstringentes/química , Vinho/análise , Paladar , Tartaratos
4.
J Sci Food Agric ; 103(3): 1499-1513, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36189836

RESUMO

BACKGROUND: Oenological tannins are commercial natural products extracted from different botanical sources, which were widely reported as prominent contributors to wine quality. Research on wine quality affected by tannins extracts promoted the development of new oenological products with low cost and high accessibility. In the present study, the structure and concentration of tannin in polyphenol extracts, as well as their correlation with astringency and the color of model wine, was investigated by UV spectrophotometer, HPLC, fluorescence quenching, sodium dodecylsulfate-polyacrylamide gel electrophoresis, colorimeter and sensory evaluation. RESULTS: Resource extracts from 16 of 44 plants were screened as wine oenological tannins, according to the total polyphenol and total flavanol, as well as the intensity of astringency and bitterness. Polyphenols extracted from grape seeds and green tea were more effective in increasing the wine astringency compared to other plant tannins. CONCLUSION: Total flavanol content and tannin activity showed a strong correlation with wine astringency. Condensed tannins with mean degree of polymerization also exhibited strong color stability, and the concentrations of (-)-epigallocatechin were associated with the a* value, a negative qualitative factor for wine color. The present study provides new clues regarding the development of low-cost and highly accessible sources of polyphenol extracts and lays a theoretical foundation for the development of the oenological product. © 2022 Society of Chemical Industry.


Assuntos
Vitis , Vinho , Adstringentes/análise , Extratos Vegetais/química , Polifenóis/análise , Taninos/análise , Vitis/química , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA