RESUMO
Nitrosamine-related impurities (N-nitrosomethylamino butyric acid [NMBA], N-nitrosodiethylamine [NDEA], N-nitrosodiisopropylamine [NDIPA], N-nitrosomethylphenylamine [NMPA], N-nitrosodibutylamine [NDBA], N-nitrosodimethylamine [NDMA], and N-nitrosoethylisopropylamine [NEIPA]) and 5-[4'-(azidomethyl)-[1,1'-biphenyl]-2-yl]-2H-tetrazole (AZBT) formed during the manufacture of sartan medicines have been classified into human mutagens and carcinogens after long-term treatment. The study developed a simple, economical but highly sensitive procedure for the simultaneous quantification of seven nitrosamines and AZBT impurities in sartan pharmaceuticals. After extraction with methanol (MeOH) 50%, the compounds were analyzed with a reversed-phase liquid chromatography-tandem mass spectroscopy with atmospheric-pressure chemical ionization (APCI) mode (APCI[+] for nitrosamines and APCI[-] for AZBT), selected reaction monitoring, C18 column, gradient elution with 0.1% formic acid in water and in MeOH, respectively. The validated procedure obtained high extraction efficiency (>90%), wide linear range (0.2-50.0 ng/mL NMBA, NDEA, NDIPA, NMPA, and NDBA; 0.5-50.0 ng/mL NDMA and NEIPA; 2.0-100 ng/mL AZBT), limit of quantification < 10% of the acceptance level, recovery range of 85%-115% with relative standard deviation < 15% and minimum matrix effects for all impurities. The procedure was applied to test 16 commercial losartan samples. As a result, eight samples contained AZBT within the current regulatory limits, but no nitrosamine impurities were detected in all samples.
Assuntos
Contaminação de Medicamentos , Losartan , Nitrosaminas , Espectrometria de Massas em Tandem , Tetrazóis , Nitrosaminas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Losartan/análise , Tetrazóis/análiseRESUMO
In recent years, the control of volatile N-nitrosamines (NAs) has been of interest in the pharmaceutical and food industries, as many of these compounds are probable human carcinogens. Thus, rapid and trace-level quantitative determination methods are in urgent demand. In this work, ambient pressure ammonium-adduct ionization mass spectrometry was proposed for the sensitive detection of volatile nitrosamines in various pharmaceutical headspaces. The ammonium ions produced through electrospray ionization acted as reactant ions for NAs to generate ammonium-NA adduct ions and underwent in-source collision-induced dissociation to produce protonated NAs, which were detected by mass spectrometry. The ionization selectivity and sensitivity for various volatile NAs were improved significantly using the developed method, which was demonstrated by the limit of quantification (LOQ) below 52 ng L-1 for all NAs, and the quantitative performance was consequently improved. Different NAs exhibited almost equimolar response using NH4+ as the reactant ion, with at least a twofold enhancement in intensity for the individual compounds relative to when using H+ as the reactant ion. The proposed method is a rapid, sensitive, and environmentally economical approach that uses few reagents.
RESUMO
Herein, we develop a novel method using gas chromatography-ion mobility spectrometry (IMS) with an ammonia dopant for the determination of volatile N-nitrosamines in meat products. The IMS system was implemented with Fourier deconvolution multiplexing to simultaneously improve the resolving power and sensitivity. The ammonia dopant mitigated the formation of N-nitrosamine dimer ions, suppressing the ionization of interferents and shifting the reactant peak from hydrated protons to hydrated ammonium ions. The ammonium adduct product ions of N-nitrosamines were confirmed using time-of-flight mass spectrometry. The instrument limits of detection and quantitation for nitrosamines were 0.78-1.79 and 2.60-5.82 ng/mL, respectively, with recoveries between 71.39% and 110.59% using a simple water distillation method. The developed method showed satisfactory performance when applied to the detection of nitrosamines in various meat products.
Assuntos
Amônia , Espectrometria de Mobilidade Iônica , Produtos da Carne , Nitrosaminas , Nitrosaminas/análise , Amônia/química , Amônia/análise , Produtos da Carne/análise , Animais , Espectrometria de Mobilidade Iônica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Contaminação de Alimentos/análise , Suínos , BovinosRESUMO
N-nitrosamines (NAs) are potentially highly carcinogenic compounds that have recently been detected in traces in various drug products (DPs). Due to the different physicochemical properties of NAs and active pharmaceutical ingredients (APIs), there is a lack of appropriate analytical methods for simultaneously determining multiple NAs in various DPs. To overcome these limitations, a versatile and innovative analytical approach was developed using a unique sample clean-up procedure by solid phase extraction based on hydrophilic interaction chromatography, which retains high amounts of APIs and polar excipients while allowing NAs of interest to pass through. The samples were analyzed by liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry. The proposed highly sensitive, selective, and robust method was successfully validated, resulting in excellent linearity (R2 > 0.999), accuracy (85-115 %), and precision (RSD <10 %) with adequate recoveries (>80 %), achieving limits of quantitation of at least 42.5 % of regulatory limits. Furthermore, robustness was confirmed for ten DPs (recoveries >80 % and RSD <15 % for all NAs), including those containing up to three APIs. The analytical approach was utilized to examine 26 commercially available and expired DPs. Three NAs (N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, and N-nitroso-di-n-butylamine) were detected, only NDMA exceeded the limits in expired DPs by up to 32-fold. It was found that special care should be taken when handling samples as NDMA content can be decreased by almost 50 % if samples are not prepared immediately. The approach was tested on 59 different APIs and was confirmed as reliable tool for routine monitoring of 15 NAs in various DPs. Due to its flexibility, the method can be further adapted to the specific API of interest or extended to the newly emerging NA drug substance-related impurities to ensure the safety of DPs and thereby mitigate potential health risks.
RESUMO
The carcinogenicity potency categorization approach (CPCA) derived and harmonized by Health Authorities was a significant milestone, as it defined molecular properties that allowed for the rapid evaluation of the chemical structures of N-nitrosamine drug substance related impurities (NDSRIs) and the assignment of associated lifetime Acceptable Intake (AI) limits to inform on appropriate impurity control strategies in certain drug products. Nonetheless, it is important to continue to refine and improve on the CPCA based upon data-derived evidence. Herein, we focus on the default CPCA AI for NDSRIs, which is largely based on the small molecule N-nitrosamines (NAs). Considering the carcinogenic potency of NAs with a molecular weight >200 Da (NDSRIs molecular weight is typically 200-600 Da), we propose that in the absence of any compound specific data, the lowest lifetime Acceptable Intake for NAs, such as NDSRIs, should be 10x less (i.e., 150 ng/day) than the ICH M7 Threshold of Toxicological Concern of 1500 ng/day, (even for NDSRIs that are considered CPCA Category 1 and 2) which would conservatively result in a theoretical cancer risk of <1 in 100,000.
RESUMO
Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.
Assuntos
Testes de Mutagenicidade , Mutagênicos , Nitrosaminas , Salmonella typhimurium , Testes de Mutagenicidade/métodos , Animais , Nitrosaminas/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Ratos , Mutagênicos/toxicidade , Cricetinae , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Masculino , Contaminação de Medicamentos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ativação MetabólicaRESUMO
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Assuntos
Contaminação de Alimentos , Nitrosaminas , Nitrosaminas/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Humanos , Inocuidade dos Alimentos/métodos , Extração em Fase Sólida/métodos , Análise de Alimentos/métodosRESUMO
Background: India has the highest incidence worldwide of smokeless tobacco (SLT)-associated oral cancer, accounting for nearly 70% of all SLT users globally. Nicotine and tobacco-specific N-nitrosamines (TSNA) play critical roles in the addictive and carcinogenic potential, respectively, of SLT products. Our group has previously reported substantial variability in nicotine and TSNA levels across a small SLT product sample in India, calling for systematic surveillance. However, there is no information available on the current levels of these constituents in Indian SLT. Methods: We analysed 321 samples representing 57 brands of eight popular types of manufactured SLT products purchased from five local markets in Mumbai, India between August, and September 2019. The sampling locations were Mumbai Central, Kurla, Thane, Vashi, and Airoli. Product pH, moisture content, total and unprotonated (biologically available) nicotine, and TSNA levels were measured at the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC) in Mumbai. Findings: Total nicotine content ranged from 0.45 to 35.1 mg/g across products. The unprotonated nicotine fraction contributed 0.1-100% of the total nicotine content. The carcinogenic TSNA levels ranged 0.06-76 ug/g for N'-nitrosonornicotine (NNN), 0.02-19.2 ug/g for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 0.01-6.51 ug/g for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Consistent with our previous study, we observed substantial variations across different brands of the same product type. Interpretation: This is the most extensive and the first within-country study to report brand-specific nicotine and TSNA levels in SLT products marketed in Mumbai, India. Our results show that levels of these constituents remain extremely variable across Indian SLT and are strikingly high in many products. Enhanced public education and continued efforts to reduce SLT use prevalence in India are critical for reducing the global burden of SLT-associated morbidity and mortality. Regulation of nicotine and TSNA levels in SLT products should be considered. Funding: This work was supported by the National Institutes of Health (USA) grant R01-TW010651 and, in part, by grants R01-CA180880 and R50-CA211256. The LC-MS/MS analysis was supported in part by XII Plan project funding from the Department of Atomic Energy, Government of India.
RESUMO
Volatile N-nitrosamines (VNAs) are probably and possibly carcinogenic compounds to humans and widely found in processed meat products. In this study, the dietary exposure distribution and probabilistic cancer risk for main VNAs (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomethylethylamine, N-nitrosopiperidine, N-nitrosodibutylamine, and N-nitrosodi-n-propylamine) were calculated by Monte Carlo simulation (MCS). The lowest and highest mean concentrations of these six NAs were related to NDBA and NDEA as 0.350 and 2.655 µg/kg, respectively. In the 95th percentile, chronic daily intake of total VNAs for children (3-14 years) and adults (15-70 years) were calculated to be 2.83 × 10-4 and 5.90 × 10-5 mg/kg bw/day, respectively. The cancer risk caused by the consumption of chicken sausages was less than 10-4, indicating low concern for the Iranian population. According to principal component analysis and heat map results, NDEA, NPIP and frying showed a positive correlation, highlighting that the variables follow a similar trend.
RESUMO
N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals F. periodonticum (Fp) as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC. We demonstrate that Fp potently drives de novo synthesis of fatty acids, migration, invasion and EMT phenotype through its unique FadAL adhesin. However, N-nitrosomethylbenzylamine upregulates the transcription level of FadAL. Mechanistically, co-immunoprecipitation coupled to mass spectrometry shows that FadAL interacts with FLOT1. Furthermore, FLOT1 activates PI3K-AKT/FASN signaling pathway, leading to triglyceride and palmitic acid (PA) accumulation. Innovatively, the results from the acyl-biotin exchange demonstrate that FadAL-mediated PA accumulation enhances Wnt3A palmitoylation on a conserved cysteine residue, Cys-77, and promotes Wnt3A membrane localization and the translocation of ß-catenin into the nucleus, further activating Wnt3A/ß-catenin axis and inducing EMT phenotype. We therefore propose a "microbiota-cancer cell subpopulation" interaction model in the highly heterogeneous tumor microenvironment. This study unveils a mechanism by which Fp can drive ESCC and identifies FadAL as a potential diagnostic and therapeutic target for ESCC.
Assuntos
Transição Epitelial-Mesenquimal , Carcinoma de Células Escamosas do Esôfago , Nitrosaminas , Proteína Wnt3A , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética , Nitrosaminas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Carcinoma de Células Escamosas do Esôfago/genética , Linhagem Celular Tumoral , Lipoilação , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Transdução de SinaisRESUMO
The rapid expansion of urban areas and the increasing demand for water resources necessitate substantial investments in technologies that enable the reuse of municipal wastewater for various purposes. Nonetheless, numerous challenges remain, particularly regarding disinfection by-products (DBPs), especially carcinogenic compounds such as N-nitrosamines (NTRs). To tackle the ongoing issues associated with reverse osmosis (RO) membranes, this study investigated the rejection of NTRs across a range of commercially available RO membranes. In addition, the research aimed to improve rejection rates by integrating molecular plugs into the nanopores of the polyamide (PA) layer. Hexylamine (HEX) and hexamethylenediamine (HDMA), both linear chain amines, have proven to be effective as molecular plugs for enhancing the removal of NTRs. Given the environmental and human health concerns associated with linear amines, the study also aimed to assess the feasibility of diamine molecules as potential alternatives. The application of molecular plugs led to changes in pore size distribution (PSD) and effective pore number, resulting in a decrease in membrane permeability (from 5 to 33%), while maintaining levels suitable for RO processes. HEX and HDMA exhibited a positive effect on NTR rejection with ACM1, ACM5 and BW30LE membranes. In particular, NDMA rejection, the smallest molecule of the tested NTRs, with ACM1 was improved by 65.5% and 70.6% after treatment with HEX and HDMA, respectively.
RESUMO
The finding of N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA) in marketed drugs has led to implementation of risk assessment processes intended to limit exposures to the entire class of N-nitrosamines. A critical component of the risk assessment process is establishing exposure limits that are protective of human health. One approach to establishing exposure limits for novel N-nitrosamines is to conduct an in vivo transgenic rodent (TGR) mutation study. Existing regulatory guidance on N-nitrosamines provides decision making criteria based on interpreting in vivo TGR mutation studies as an overall positive or negative. However, point of departure metrics, such as benchmark dose (BMD), can be used to define potency and provide an opportunity to establish relevant exposure limits. This can be achieved through relative potency comparison of novel N-nitrosamines with model N-nitrosamines possessing robust in vivo mutagenicity and carcinogenicity data. The current work adds to the dataset of model N-nitrosamines by providing in vivo TGR mutation data for N-nitrosopiperidine (NPIP). In vivo TGR mutation data was also generated for a novel N-nitrosamine impurity identified in sitagliptin-containing products, 7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo-[4,3-a]pyrazine (NTTP). Using the relative potency comparison approach, we have demonstrated the safety of NTTP exposures at or above levels of 1500 ng/day.
Assuntos
Contaminação de Medicamentos , Mutação , Nitrosaminas , Animais , Medição de Risco , Nitrosaminas/toxicidade , Mutação/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Camundongos , Relação Dose-Resposta a Droga , Dimetilnitrosamina/toxicidade , Animais Geneticamente Modificados , Dietilnitrosamina/toxicidade , Humanos , Carcinógenos/toxicidade , Ratos , MasculinoRESUMO
N-nitrosamines are a type of nitrogen-containing organic pollutant with high carcinogenicity and mutagenicity. In the main drinking water sources of small and medium-sized towns in China, the contamination levels of N-nitrosamines remain unclear. In addition, there is still lack of research on the concentration of N-nitrosamines and their precursors in tributary rivers. In this study, eight N-nitrosamines and their formation potentials ï¼FPsï¼ were investigated in the Qingjiang River, which is a primary tributary of the Yangtze River. The sewage discharge sites were also monitored, and the environmental influencing factors, carcinogenic and ecological risks caused by N-nitrosamines, and their precursors were evaluated. The results showed that six N-nitrosamines were detected in water samples of the Qingjiang River, among which NDMA [ï¼10 ±15ï¼ ng·L-1], NDEA [ï¼9.3 ±9.3ï¼ ng·L-1], and NDBA [ï¼14 ±7.8ï¼ ng·L-1] were the dominant N-nitrosamines, whereas seven N-nitrosamines were detected in chloraminated water samples, among which NDMA-FP [ï¼46 ±21ï¼ ng·L-1], NDEA-FP [ï¼26 ±8.3ï¼ ng·L-1], and NDBA-FP [ï¼22 ±13ï¼ ng·L-1] were the dominant N-nitrosamine FPs. The concentrations of N-nitrosamines in the middle reaches of the Qingjiang River were higher than those in the upper and lower reaches. Furthermore, the concentrations of N-nitrosamines in the sample sites of sewage discharge and tributaries were significantly higher than those in other sampling sites. The monitoring results at the direct sewage discharge points indicated that the main source of N-nitrosamines in river water was the sewage carrying N-nitrosamines and their precursors. In addition, the concentrations of the three dominant N-nitrosamines including NDMA, NDBA, and NDEA were positively correlated with each other, mainly because of their similar sewage sources. The average carcinogenic risk to residents due to N-nitrosamine in drinking water sources was 2.4×10-5, indicating a potential carcinogenic risk. Moreover, due to the high concentrations of N-nitrosamine formation potentials in the Qingjiang River, the carcinogenic risk of drinking water may be even higher. The ecological risk assessment showed that the ecological risk quotient values of N-nitrosamines in the Qingjiang River watershed were lower than 0.002, which was negligible.
Assuntos
Monitoramento Ambiental , Nitrosaminas , Poluentes Químicos da Água , Poluição Química da Água , Nitrosaminas/análise , Medição de Risco , Poluição Química da Água/estatística & dados numéricos , Poluentes Químicos da Água/análise , China , Exposição Ambiental/estatística & dados numéricos , Água Potável/análise , RiosRESUMO
The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.
Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitrosaminas , Rios , Poluentes Químicos da Água , Nitrosaminas/análise , Poluentes Químicos da Água/análise , China , Água Subterrânea/química , Rios/química , Águas Residuárias/química , Resíduos Industriais/análise , Galvanoplastia , Animais , EcossistemaRESUMO
Background: Humans are frequently exposed to N-nitrosamines through various sources, including diet, cigarette smoking, contaminated water, the atmosphere, and endogenous nitrosation. Exposure to these carcinogens may also contribute to the gender-specific incidence of liver cancer, which is significantly higher in males than in females, possibly due to the influence of endogenous hormones such as testosterone. However, the effect of testosterone on N-nitrosamine-induced liver cancer and its underlying mechanism remains unclear. Purpose: To investigate the effect of testosterone on the development of liver cancer induced by N-nitrosamines exposure. Patients and Methods: Histopathological and immunohistochemical staining techniques were employed to analyze the expression levels and nuclear localizations of key signaling molecules, including androgen receptor (AR), ß-catenin, and HMGB1, in both tumor and non-tumor regions of liver samples obtained from human patients and mice. Results: The findings demonstrated a strong correlation between AR and ß-catenin in the nuclear region of tumor areas. AR also showed a significant correlation with HMGB1 in the cytoplasmic region of non-tumor areas in both human and mice samples. The study further analyzed the expression levels and patterns of these three proteins during the progression of liver tumors. Conclusion: This study confirms that AR has the ability to modulate the expression levels and patterns of ß-catenin and HMGB1 in vivo, thereby exacerbating the progression of liver cancer induced by environmental N-nitrosamines exposure. Importantly, the effect of testosterone on the formation of liver cancer induced by environmental N-nitrosamine exposure intensifies this progression. These findings have important implications for drug safety in clinical practice and emphasize the significance of reducing N-nitrosamines exposure through conscious choices regarding diet and lifestyle to ensure environmental safety.
RESUMO
N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.
Assuntos
Carbono , Cromatografia Gasosa-Espectrometria de Massas , Indóis , Nanosferas , Nitrogênio , Nitrosaminas , Polímeros , Extração em Fase Sólida , Nitrogênio/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Porosidade , Nanosferas/química , Carbono/química , Polímeros/química , Nitrosaminas/análise , Nitrosaminas/isolamento & purificação , Indóis/química , Extração em Fase Sólida/métodos , Adsorção , Óxido Ferroso-Férrico/químicaRESUMO
Several epidemiological studies have reported a positive association between the consumption of processed meats containing N-nitrosamines (NAs) and the incidence of hepatocellular and colon cancer. The health risk assessment in this investigation was based on the concentration of six volatile N-nitrosamines (VNAs) (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomethylethylamine, N-nitrosopiperidine, N-nitrosodibutylamine, and N-nitrosodi-n-propylamine) found in processed meat products (sausage and kielbasa) in the Iranian market. Direct supported liquid membrane two-phase hollow fiber electromembrane extraction coupled to gas chromatography/mass spectrometry was used to analyse six VNAs. The mean concentration of the six VNAs in sausages and kielbasa was 38.677 ± 27.56 and 48.383 ± 35.76 µg/kg, respectively. The 95th percentile for the chronic daily intake of total VNAs for children (3-14 years) and adults (15-70 years) were calculated to be 5.06 × 10-4 and 1.09 × 10-4 mg/kg bw/day, respectively. The cancer risk assessment showed that the risk associated with NDEA was the highest among the other VNAs studied in Iranian processed meat, with a 95th percentile for the child and adult groups. Based on an incremental lifetime cancer risk (ILCR) value of ≤10-4 for the carcinogenic effects of exposure to a total of six VNAs, it indicates low concern for all age groups.
Assuntos
Exposição Dietética , Produtos da Carne , Nitrosaminas , Análise de Componente Principal , Humanos , Nitrosaminas/análise , Produtos da Carne/análise , Adulto , Medição de Risco , Exposição Dietética/análise , Adolescente , Criança , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Irã (Geográfico) , Contaminação de Alimentos/análise , Idoso , Cromatografia Gasosa-Espectrometria de Massas/métodosRESUMO
BACKGROUND: The effect of human 8-Oxoguanine DNA Glycosylase (hOGG1) on exogenous chemicals in esophageal squamous cell carcinoma (ESCC) remain unclear. The study plans to determine hOGG1 expression levels in ESCC and possible interactions with known environmental risk factors in ESCC. MATERIAL AND METHODS: We analyzed levels of exposure to urinary nitrosamines in volunteers from high and low prevalence areas by GC-MS. And we performed the interaction between hOGG1 gene and nitrosamine disinfection by-products by analyzing hOGG1 gene expression in esophageal tissues. RESULTS: In ESCC, nitrosamine levels were significantly increased and hOGG1 mRNA expression levels were significantly decreased. There was a statistically significant interaction between reduced hOGG1 mRNA levels and non-tap drinking water sources in ESCC. The apparent indirect association between ESCC and NMEA indicated that 33.4% of the association between ESCC and NMEA was mediated by hOGG1. CONCLUSION: In populations which exposed to high levels of environmental pollutants NDMA, low expression of hOGG1 may promote the high incidence of esophageal cancer in Huai'an. hOGG1 may be a novel mediator in nitrosamine-induced esophageal tumorigenesis.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Nitrosaminas , Humanos , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago/complicações , Nitrosaminas/toxicidade , Transformação Celular Neoplásica , RNA MensageiroRESUMO
N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5-152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (<-19 kcal mol-1) and relatively low activation energies (<18 kcal mol-1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater.
Assuntos
Nitrosaminas , Humanos , Nitrosaminas/química , Nitrosação , Aminas , Carcinógenos , Nitritos/químicaRESUMO
N-nitrosamines in reservoir water have drawn significant attention because of their carcinogenic properties. Karst reservoirs containing dissolved organic matter (DOM) are important drinking water sources and are susceptible to contamination because of the fast flow of various contaminants. However, it remains unclear whether N-nitrosamines and their precursor, DOM, spread in karst reservoirs. Therefore, this study quantitatively investigated the occurrence and sources of N-nitrosamines based on DOM properties in three typical karst reservoirs and their corresponding tap water. The results showed that N-nitrosamines were widely spread, with detection frequencies > 85%. Similar dominant compounds, including N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosopyrrolidine, and N-nitrosodibutylamine, were observed in reservoirs and tap water, with average concentrations of 4.7-8.9 and 2.8-6.7 ng/L, respectively. The average carcinogenic risks caused by these N-nitrosamines were higher than the risk level of 10-6. Three-dimensional fluorescence excitation-emission matrix modeling revealed that DOM was composed of humus-like component 1 (C1) and protein-like component 2 (C2). Fluorescence indicators showed that DOM in reservoir water was mainly affected by exogenous pollution and algal growth, whereas in tap water, DOM was mainly affected by microbial growth with strong autopoietic properties. In the reservoir water, N-nitrosodiethylamine and N-nitrosopiperidine were significantly correlated with C2 and biological indicators, indicating their endogenously generated sources. Based on the principal component analysis and multiple linear regression methods, five sources of N-nitrosamines were identified: agricultural pollution, microbial sources, humus sources, degradation processes, and other factors, accounting for 46.8%, 36.1%, 7.82%, 8.26%, and 0.96%, respectively. For tap water, two sources, biological reaction processes, and water distribution systems, were identified, accounting for 75.7% and 24.3%, respectively. Overall, this study presents quantitative information on N-nitrosamines' sources based on DOM properties in typical karst reservoirs and tap water, providing a basis for the safety of drinking water for consumers.