RESUMO
Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family-SLC and SLCO) and efflux (ATP-binding cassette family-ABC, multidrug and toxic compound extrusion family-MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function.
Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Transportador 2 de Glucose-Sódio/metabolismo , Proteínas de Membrana Transportadoras/metabolismoRESUMO
Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
Assuntos
Injúria Renal Aguda , Cisplatino , Indicã , Fator de Necrose Tumoral alfa , Animais , Injúria Renal Aguda/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Camundongos , Masculino , Células RAW 264.7 , Ratos , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos Sprague-Dawley , Sinaptofisina/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Uremia/metabolismo , Uremia/complicações , Linhagem Celular TumoralRESUMO
The organic anion transporter 3 (OAT3), an important renal uptake transporter, is associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OAT3 inhibitors with little toxicity in natural products, especially flavonoids, in reducing OAT3-mediated AKI is of great value. The five strongest OAT3 inhibitors from the 97 flavonoids markedly decreased aristolochic acid I-induced cytotoxicity and alleviated methotrexate-induced nephrotoxicity. The pharmacophore model clarified hydrogen bond acceptors and hydrophobic groups are the critical pharmacophores. These findings would provide valuable information in predicting the potential risks of flavonoid-containing food/herb-drug interactions and optimizing flavonoid structure to alleviate OAT3-related AKI.
Assuntos
Injúria Renal Aguda , Flavonoides , Transportadores de Ânions Orgânicos Sódio-Independentes , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Transporte Biológico , Flavonoides/farmacologia , Flavonoides/química , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos Sódio-Independentes/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismoRESUMO
Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.
Assuntos
Transportadores de Ânions Orgânicos , Ratos , Animais , Transportadores de Ânions Orgânicos/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Eliminação Renal , Furosemida/farmacologia , Furosemida/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ácido Cinurênico/metabolismo , Ácido Cinurênico/farmacologia , Ácido Piridóxico/metabolismo , Ácido Piridóxico/farmacologia , Interações Medicamentosas , Biomarcadores/metabolismo , Rim/metabolismoRESUMO
Objective: Thyroid hormone (TH) transport represents a critical first step in governing intracellular TH regulation. It is still unknown whether the full repertoire of TH transporters has been identified. Members of the solute carrier (SLC) 22 family have substrates in common with the known TH transporters of the organic anion-transporting peptide family. Therefore, we screened the SLC22 family for TH transporters. Methods: Uptake of 1 nM of iodothyronines or sulfated iodothyronines in COS1 cells expressing SLC22 proteins was performed. Results: We first tested 25 mouse (m) SLC22 proteins for TH uptake and found that the majority of the organic anion transporter (OAT) clade were capable of 3,3',5-triiodothyronine and/or thyroxine (T4) transport. Based on phylogenetic tree analysis of the mouse and human (h) SLC22 family, we selected eight hSLC22s that grouped with the newly identified mouse TH transporters. Of these, four tested positive for uptake of one or more substrates, particularly hSLC22A11 showed robust (3-fold over control) uptake of T4. Uptake of sulfated iodothyronines was strongly (up to 17-fold) induced by some SLC22s, most notably SLC22A8, hSLC22A9, mSLC22A27 and mSLC22A29. Finally, the zebrafish orthologues of SLC22A6/8 drOatx and drSlc22a6l also transported almost all (sulfated) iodothyronines tested. The OAT inhibitors lesinurad and probenecid inhibited most SLC22 proteins. Conclusions: Our results demonstrated that members of the OAT clade of the SLC22 family constitute a novel, evolutionary conserved group of transporters for (sulfated) iodothyronines. Future studies should reveal the relevance of these transporters in TH homeostasis and physiology.
Assuntos
Transportadores de Ânions Orgânicos , Peixe-Zebra , Humanos , Camundongos , Animais , Filogenia , Peixe-Zebra/metabolismo , Sulfatos/metabolismo , Hormônios Tireóideos , Proteínas de Membrana Transportadoras/genética , Transportadores de Ânions Orgânicos/genéticaRESUMO
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Assuntos
Avena , Transportadores de Ânions Orgânicos , Humanos , Avena/metabolismo , Tecnologia de Sensoriamento Remoto , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Trifosfato de AdenosinaRESUMO
Tranilast, N-(3',4'-dimethoxycinnamoyl)-anthranilic acid, is an anti-allergic drug and is considered for use in the treatment of rheumatoid arthritis. Methotrexate, an antimetabolite and folate antagonist to treat some cancers, is also a first-line drug for RA. The aim of this study was to understand whether tranilast could inhibit renal uptake transporters (Oat1, Oat3, and Oct2) and whether MTX combined with TL would have drug-drug interactions. The results of kidney slices and HEK293T-OAT3 cell uptake experiments showed that TL (10 µM) could inhibit the uptake of penicillin G and MTX, which are substrates of OAT3. When TL (10 mg/kg) was combined with MTX (5 mg/kg), the area under the curve and peak concentration of MTX increased by 46.46% and 113.51%, respectively, while the pharmacokinetic process of tranilast (10 mg/kg) was not changed by methotrexate (5 mg/kg). TL could increase plasma exposure of MTX by inhibiting Oat3 in vitro and in vivo.
Assuntos
Metotrexato , Proteína 1 Transportadora de Ânions Orgânicos , Interações Medicamentosas , Células HEK293 , Humanos , Rim , Metotrexato/farmacologia , Transportadores de Ânions Orgânicos Sódio-Independentes , ortoaminobenzoatosRESUMO
The ß-lactam penicillin antibiotic cloxacillin (CLX) presents wide inter-individual pharmacokinetics variability. To better understand its molecular basis, the precise identification of the detoxifying actors involved in CLX disposition and elimination would be useful, notably with respect to renal secretion known to play a notable role in CLX elimination. The present study was consequently designed to analyze the interactions of CLX with the solute carrier transporters organic anion transporter (OAT) 1 and OAT3, implicated in tubular secretion through mediating drug entry at the basolateral pole of renal proximal cells. CLX was first shown to block OAT1 and OAT3 activity in cultured OAT-overexpressing HEK293 cells. Half maximal inhibitory concentration (IC50 ) value for OAT3 (13 µm) was however much lower than that for OAT1 (560 µm); clinical inhibition of OAT activity and drug-drug interactions may consequently be predicted for OAT3, but not OAT1. OAT3, unlike OAT1, was next shown to mediate CLX uptake in OAT-overexpressing HEK293 cells. Kinetic parameters for this OAT3-mediated transport of CLX (Km = 10.7 µm) were consistent with a possible in vivo saturation of this process for high CLX plasma concentrations. OAT3 is consequently likely to play a pivotal role in renal CLX secretion and consequently in total renal CLX elimination, owing to the low plasma unbound fraction of the antibiotic. OAT3 genetic polymorphisms as well as co-administered drugs inhibiting in vivo OAT3 activity may therefore be considered as potential sources of CLX pharmacokinetics variability.
Assuntos
Antibacterianos/farmacologia , Cloxacilina/farmacologia , Rim/efeitos dos fármacos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Antibacterianos/farmacocinética , Cloxacilina/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Células HEK293 , Humanos , Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Eliminação RenalRESUMO
Although arachnoid mater epithelial cells form the blood-arachnoid barrier (BAB), acting as a blood-CSF interface, it has been generally considered that the BAB is impermeable to water-soluble substances and plays a largely passive role. Here, we aimed to clarify the function of transporters at the BAB in regulating CSF clearance of water-soluble organic anion drugs based on quantitative targeted absolute proteomics (QTAP) and in vivo analyses. Protein expression levels of 61 molecules, including 19 ATP-binding-cassette (ABC) transporters and 32 solute-carrier (SLC) transporters, were measured in plasma membrane fraction of rat leptomeninges using QTAP. Thirty-three proteins were detected; others were under the quantification limits. Expression levels of multidrug resistance protein 1 (Mdr1a/P-gp/Abcb1a) and breast cancer resistance protein (Bcrp/Abcg2) were 16.6 and 3.27 fmol/µg protein (51.9- and 9.82-fold greater than in choroid plexus, respectively). Among those organic anion transporters detected only at leptomeninges, not choroid plexus, organic anion transporter 1 (oat1/Slc22a6) showed the greatest expression (2.73 fmol/µg protein). On the other hand, the protein expression level of oat3 at leptomeninges was 6.65 fmol/µg protein, and the difference from choroid plexus was within two-fold. To investigate oat1's role, we injected para-aminohippuric acid (PAH) with or without oat1 inhibitors into cisterna magna (to minimize the contribution of choroid plexus function) of rats. A bulk flow marker, FITC-inulin, was not taken up from CSF up to 15 min, whereas uptake clearance of PAH was 26.5 µL/min. PAH uptake was completely blocked by 3 mM cephalothin (inhibits both oat1 and oat3), while 17% of PAH uptake was inhibited by 0.2 mM cephalothin (selectively inhibits oat3). These results indicate that oat1 and oat3 at the BAB provide a distinct clearance pathway of organic anion drugs from CSF independently of choroid plexus.
Assuntos
Ânions/farmacocinética , Aracnoide-Máter/metabolismo , Barreira Hematoencefálica/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Animais , Ânions/administração & dosagem , Ânions/líquido cefalorraquidiano , Aracnoide-Máter/irrigação sanguínea , Barreira Hematoencefálica/efeitos dos fármacos , Cefalotina/farmacologia , Líquido Cefalorraquidiano/química , Plexo Corióideo/irrigação sanguínea , Plexo Corióideo/metabolismo , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Injeções Intraventriculares , Masculino , Taxa de Depuração Metabólica , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Proteômica/métodos , Ratos , Ratos Wistar , Rodamina 123/administração & dosagem , Rodamina 123/líquido cefalorraquidiano , Rodamina 123/farmacocinéticaRESUMO
The SLC22 transporter family consists of more than two dozen members, which are expressed in the kidney, the liver, and other tissues. Evolutionary analysis indicates that SLC22 transporters fall into at least six subfamilies: OAT (organic anion transporter), OAT-like, OAT-related, OCT (organic cation transporter), OCTN (organic cation/carnitine transporter), and OCT/OCTN-related. Some-including OAT1 [SLC22A6 or NKT (novel kidney transporter)] and OAT3 (SLC22A8), as well as OCT1 (SLC22A1) and OCT2 (SLC22A2)-are widely studied drug transporters. Nevertheless, analyses of knockout mice and other data indicate that SLC22 transporters regulate key metabolic pathways and levels of signaling molecules (e.g., gut microbiome products, bile acids, tricarboxylic acid cycle intermediates, dietary flavonoids and other nutrients, prostaglandins, vitamins, short-chain fatty acids, urate, and ergothioneine), as well as uremic toxins associated with chronic kidney disease. Certain SLC22 transporters-such as URAT1 (SLC22A12) and OCTN2 (SLC22A5)-are mutated in inherited metabolic diseases. A new systems biology view of transporters is emerging. As proposed in the remote sensing and signaling hypothesis, SLC22 transporters, together with other SLC and ABC transporters, have key roles in interorgan and interorganism small-molecule communication and, together with the neuroendocrine, growth factor-cytokine, and other homeostatic systems, regulate local and whole-body homeostasis.
Assuntos
Transporte Biológico/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismoRESUMO
INTRODUCTION: Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-ß-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-ß-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.
Assuntos
Inibidores do Citocromo P-450 CYP2C8/farmacologia , Genfibrozila/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Citocromo P-450 CYP2C8/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP2C8/metabolismo , Interações Medicamentosas , Genfibrozila/análogos & derivados , Genfibrozila/metabolismo , Glucuronatos/metabolismo , Glucuronatos/farmacologia , Humanos , Hipolipemiantes/metabolismo , Hipolipemiantes/farmacologiaRESUMO
Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance.
Assuntos
Caprilatos/metabolismo , Fluorocarbonos/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Reabsorção Renal/fisiologia , Animais , Feminino , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Caracteres SexuaisRESUMO
Patients with chronic renal failure often have hypertension, but the cause of hypertension, other than an excess of body fluid, is not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are stimulated by uremic toxins in patients with chronic renal failure. To investigate whether RVLM neurons are sensitive to uremic toxins, such as uric acid, indoxyl sulfate, or methylguanidine, we examined changes in the membrane potentials (MPs) of bulbospinal RVLM neurons of Wister rats using the whole-cell patch-clamp technique during superfusion with these toxins. A brainstem-spinal cord preparation that preserved the sympathetic nervous system was used for the experiments. During uric acid, indoxyl sulfate, or methylguanidine superfusion, almost all the RVLM neurons were depolarized. To examine the transporters for these toxins on RVLM neurons, histological examinations were performed. The uric acid-, indoxyl sulfate-, and methylguanidine-depolarized RVLM neurons showed the presence of urate transporter 1 (URAT 1), organic anion transporter (OAT)1 or OAT3, and organic cation transporter (OCT)3, respectively. Furthermore, the toxin-induced activities of the RVLM neurons were suppressed by the addition of an anti-oxidation drug (VAS2870, an NAD(P)H oxidase inhibitor), and a histological examination revealed the presence of NAD(P)H oxidase (nox)2 and nox4 in these RVLM neurons. The present results show that uric acid, indoxyl sulfate, and methylguanidine directly stimulate bulbospinal RVLM neurons via specific transporters on these neurons and by producing oxidative stress. These uremic toxins may cause hypertension by activating RVLM neurons.
Assuntos
Indicã/toxicidade , Bulbo/efeitos dos fármacos , Metilguanidina/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Ácido Úrico/toxicidade , Animais , Proteínas de Transporte de Ânions/metabolismo , Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Bulbo/patologia , Bulbo/fisiopatologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Técnicas de Patch-Clamp , Ratos Wistar , Insuficiência Renal Crônica , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Triazóis/farmacologiaRESUMO
We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (K m) =41.5 µM, maximum uptake rate (V max) =46.2 pmol/minute, and intrinsic clearance (CL int) =1.11 µL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CL int values of 0.035 and 0.034 µL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 µM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb-drug interactions of catalposide, although their clinical relevance awaits further evaluation.
Assuntos
Glucosídeos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Extratos Vegetais/metabolismo , Animais , Transporte Biológico , Relação Dose-Resposta a Droga , Glucosídeos/farmacologia , Células HEK293 , Interações Ervas-Drogas , Humanos , Cinética , Células LLC-PK1 , Modelos Biológicos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Extratos Vegetais/farmacologia , SuínosRESUMO
In the present review we have attempted to assess the involvement of the organic anion transporters OAT1, OAT2, OAT3, and OAT4, belonging to the SLC22 family of polyspecific carriers, in drug-induced renal damage in humans. We have focused on drugs with widely recognized nephrotoxic potential, which have previously been reported to interact with OAT family members, and whose underlying pathogenic mechanism suggests the participation of tubular transport. Thus, only compounds generally believed to cause kidney injury either by means of direct tubular toxicity or crystal nephropathy have been considered. For each drug, or class of agents, the evidence for actual transport mediated by individual OATs under in vivo conditions is discussed. We have then examined their role in the context of other carriers present in the renal proximal tubule sharing certain substrates with OATs, as these are critical determinants of the overall contribution of OAT-dependent transport to intracellular accumulation and transepithelial drug secretion, and thus the impact it may have in drug-induced nephrotoxicity.