RESUMO
Making health-enhancing tea from Forsythia suspensa leaves has been a tradition of Chinese folk culture for centuries. However, these leaves were not officially recognized as a new food source until 2017 by the Chinese government. In this study, ethyl acetate fractions from Forsythia suspensa fruit and leaves exhibited excellent antioxidant activity in vitro antioxidant assays and in vivo D-galactose-induced aging mice model. The antioxidant activity of the leaves was higher than that of fruit both in vitro and in vivo. The chemical constituents present in these ethyl acetate fractions were comprehensively analyzed using UHPLC-Q-Exactive-Orbitrap/MS. A total of 20 compounds were identified, among which forsythoside E, (+)-epipinoresinol, dihydromyricetin, chlorogenic acid, and ursolic acid were exclusively detected in the ethyl acetate fraction of Forsythia suspensa leaves, but absent in the ethyl acetate fraction derived from its fruit. This study provides theoretical support for the utilization of Forsythia suspensa fruit and leaves.
Assuntos
Envelhecimento , Antioxidantes , Forsythia , Frutas , Galactose , Extratos Vegetais , Folhas de Planta , Animais , Forsythia/química , Folhas de Planta/química , Camundongos , Frutas/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Antioxidantes/química , Antioxidantes/farmacologia , Envelhecimento/efeitos dos fármacos , Masculino , Humanos , Espectrometria de MassasRESUMO
The consequences of climate change along with diverse food regulations and agricultural practices worldwide are complexifying the occurrence and management of chemical contaminants in food. In this context, we present an ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach for the simultaneous identification and quantitation of over 1100 pesticide residues, mycotoxins, and plant toxins in cereals and fruits and vegetables. Analytical conditions were optimized to maximize the scope of the targeted molecules, the reliability of compound identification, and quantification performance within a single method. The method was further transferred and validated in another laboratory to assess its ruggedness. Validation according to the SANTE 11312/2021v2 guidelines showed that 92% and 98% of the molecules fulfill the quantification criteria at the lowest validated level in the cereals and fruits and vegetables groups, respectively. Analysis of fifteen certified reference materials led to a 96% satisfactory rate of z-scores confirming method's competitiveness. Furthermore, the occurrence of these contaminants was studied in 205 cereals and grains samples collected worldwide. The low µg/kg quantification limits make this LC-HRMS method a valuable tool to ensure compliance toward regulations and to screen for non-regulated substances for which occurrence data are crucial for an appropriate risk evaluation.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Kadsura coccinea roots are a traditional folk medicine used to treat gastrointestinal diseases. In recent years, research on K. coccinea has predominantly focused on the analysis of chemical composition and screening for activity, but there is a scarcity of studies that employ mass spectrometry to analyze Kadsura coccinea roots. AIM OF THE STUDY: This study aimed to characterize the chemical composition of K. coccinea roots and explore the pharmacological mechanisms with network pharmacology. Cell assay and Western blot analysis were used to verify the pharmacological mechanism of the main compounds in K. coccinea roots. MATERIALS AND METHODS: UPLC-Q-Exactive Orbitrap/MS was used for chemical analysis of K. coccinea roots, and the compounds were identified by employing diagnostic product ions, fragmentation patterns, ChemSpider, and in-house databases. Network pharmacology was employed to estimate the pathways related to pharmacological mechanisms. In addition, MTT assay was conducted to determine the inhibitory activity of colon cancer cell lines, and their apoptotic abilities were evaluated by flow cytometry and Western blot. RESULTS: The UPLC-Q-Exactive Orbitrap/MS identified a total of 54 compounds in K. coccinea roots. The 54 compounds were subjected to network pharmacology analysis, exploring the pharmacological action of the main components of K. coccinea roots. The common targets between the compounds and colon cancer comprised 2009 GO biological process items and 186 KEGG signal pathways. Flow cytometry indicated that treatments with 20 µM of the above-named compounds resulted in an apoptosis rate of 16.6%, 79.7%, and 22.2% in HCT-116 cells, respectively. Meanwhile, Western blot analysis confirmed that the compounds promoted the expression of Bax and Caspase-3 level expression. CONCLUSION: The findings demonstrated that K. coccinea roots can treat colon cancer through multiple components, targets, and pathways. This study revealed the effective components and molecular mechanisms of K. coccinea, which were preliminarily verified using in vitro experiments.
RESUMO
BACKGROUND: In China banxia xiexin decoction (BXD) has been used in treating gastric cancer (GC) for thousands of years and BXD has a good role in reversing GC histopathology, but its chemical composition and action mechanism are still unknown. AIM: To investigate the mechanism of action of BXD against GC based on transcriptomics, network pharmacology, in vivo and in vitro experiments. METHODS: The transplanted tumor model was prepared, and the nude mouse were pathologically examined after administration, and hematoxylin-eosin staining was performed. The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry (UPLC-Q-Orbitrap MS/MS), and traditional Chinese medicines systems pharmacology platform, drug bank and the Swiss target prediction platform to predict the relevant targets, the differentially expressed genes (DEGs) of GC were screened by RNA-seq sequencing, and the overlapping targets were analyzed to obtain the key targets and pathways. Cell Counting Kit-8, apoptosis assay, cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments. RESULTS: All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude, with the capecitabine group and the BXD medium-dose group being the best. A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology, RNA-seq sequencing found 4767 GC DEGs, which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKt) signaling pathway. In vitro cellular experiments confirmed that BXD-containing serum and LY294002 could inhibit the proliferation of GC cells, promote apoptosis, and inhibit the migration of GC cells by decreasing the expression of EGFR, PIK3CA, IL6, BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression. CONCLUSION: BXD has the effect of inhibiting tumor growth rate and delaying the development of GC. Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.
RESUMO
Polyphenols are responsible for wine colour and astringency, and, as antioxidants, they also have beneficial health properties. In this work, we developed a robust full-scan high-resolution mass spectrometry method for the quantification of 90 phenolic compounds in wine samples (either red, rosé, or white wine), using a UHPLC-OrbitrapTM system. With this method, we could conduct a detailed analysis of phenolic compounds in red, rosé, and white wines with great selectivity due to sub-ppm mass accuracy. Moreover, accessing the full-scan spectrum enabled us to monitor all the other compounds detected in the sample, facilitating the adaptability of this method to new phenolic compounds if needed.
RESUMO
Daurisoline, a bisbenzylisoquinoline alkaloid extracted from the rhizomes of Menispermum dauricum, exhibits diverse biological activities, encompassing antiplatelet, anti-inflammatory, neuroprotective, and antitumor properties. However, previous investigations have not comprehensively elucidated the metabolic profile and pathways of daurisoline in vivo. Using Ultra-High-Performance Liquid Chromatography with Q-Exactive Orbitrap Mass Spectrometry technology, we comprehensively investigated the metabolites of daurisoline in Sprague-Dawley rats, following intragastric administration. Data collection and analysis were enhanced through Full Scan MS/dd-MS2, in conjunction with parallel reaction monitoring, extracted ion chromatography, and diagnostic fragment ions. Sixty-three metabolites were detected and characterized, including sixty-two novel metabolites and coclaurine. This investigation elucidated the cleavage patterns and tissue distribution characteristics of the metabolism of daurisoline. Furthermore, in vivo reactions, including dehydrogenation, hydroxylation, methylation, sulfation and glucuronidation, were thoroughly examined. Investigating the metabolites of daurisoline in rats has deepened our understanding of its metabolism in vivo, aiding in elucidating its metabolic and pharmacological actions. This provides a valuable foundation for further research into its therapeutic efficacy.
RESUMO
Nitroimidazoles are well-known antibacterial and antiprotozoal agents, effective against various infections. However, they may also exhibit genotoxic, carcinogenic and mutagenic effects. This study aimed to develop an analytical method to quantify nitroimidazole residues and their metabolites in honey using Ultra Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS) and validate it according to Commission Implementing Regulation (EU) 2021/808. The method demonstrated limits of detection (LODs) ranging from 0.01 to 0.17 µg L-1 and limits of quantification (LOQs) from 0.020 to 0.29 µg L-1. Recovery rates ranged from 79.8% to 104%, with relative standard deviations (RSDs) between 4.2% and 19.6%. Analysis of 96 honey samples revealed nitroimidazole residues in 18.8% of them. These findings could enhance more effectively the Egyptian monitoring programs for these compounds in honey as to improve food safety.
RESUMO
Molecular characterization of organic aerosol (OA) is crucial for understanding its sources and atmospheric processes. However, the chemical components of OA remain not well constrained. This study used gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap MS) and GC-Quadrupole MS (GC-qMS) to investigate the organic composition in PM2.5 from Xi'an, Northwest China. GC-Orbitrap MS identified 335 organic tracers, including overlooked isomers and low-concentration molecules, approximately 1.6 times more than GC-qMS. The "molecular corridor" assessment shows the superior capability of GC-Orbitrap MS in identifying an expansive range of compounds with higher volatility and oxidation states, such as furanoses/pyranoses, di/hydroxy/ketonic acids, di/poly alcohols, aldehydes/ketones, and amines/amides. Seasonal variations in OA composition reflect diverse sources: increased di/poly alcohols in winter are derived from indoor emissions, furanoses/pyranoses and heterocyclics in spring and summer might be from biogenic emissions and secondary formation, and amides in autumn are probably from biomass burning. Integrating partial least squares discriminant analysis (PLS-DA) and potential source contribution function (PSCF) models, the source similarities and differences are further elucidated, highlighting the role of local emissions and transport from southern cities. This study offers new insights into the OA composition aided by the high mass resolution and sensitivity of GC-Orbitrap MS.
Assuntos
Aerossóis , Cromatografia Gasosa-Espectrometria de Massas , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodosRESUMO
Modern mass spectrometry technology allows for extensive sequencing of the ~ 25 kDa subunits of monoclonal antibodies (mAbs) produced by IdeS proteolysis followed by disulfide bond reduction, an approach known as middle-down mass spectrometry (MD MS). However, the spectral congestion of tandem mass spectra of large polypeptides dramatically complicates fragment ion assignment. Here, we report the development and benchmark of an MD MS strategy based on the combination of different ion fragmentation techniques with proton transfer charge reduction (PTCR) to simplify the gas-phase sequencing of mAb subunits. Applied on the liquid chromatography time scale using an Orbitrap Tribrid mass spectrometer, PTCR produces easy-to-interpret mass spectra with limited ion signal overlap. We demonstrate that the accurate estimation of the number of charges submitted to the Orbitrap mass analyzer after PTCR allows for the detection of charge-reduced product ions over a wide mass-over-charge (m/z) window with low parts per million m/z accuracy. Therefore, PTCR-based MD MS analysis increases not only sequence coverage, number of uniquely identified fragments, and number of assigned complementary ion pairs, but also the general confidence in the assignment of subunit fragments. This data acquisition method can be readily applied to any class of mAbs without an apparent need for optimization, and benefits from the high resolving power of the Orbitrap mass analyzer to return sequence coverage of individual subunits exceeding 80% in a single run, and > 90% when just two experiments are combined.
RESUMO
Healthy dietary habits encourage vegetable consumption. Although pesticide use in crops may negatively affect human health through food intake, it can also contaminate aquatic and terrestrial environments. Thus, monitoring pesticides in high-consumption matrices is crucial. This study conducted a complete workflow of analysis, including a step of target analysis of 30 widely used pesticides and a subsequent step of suspect screening. A validated QuEChERS method was employed to analyze 61 samples of fruiting vegetables and cucurbits, packaged leafy greens, and root and tuber vegetables, commercially distributed across Greece. The method proved to be highly efficient for all validation characteristics. After target analysis, the change in the residue levels detected during sample processing was evaluated as a case study using available literature data. A health risk assessment based on diet indicated acute and chronic hazard quotients (aHQ and cHQ) and chronic hazard index (cHI) values below 1. Concerning suspect screening, 53 additional identifications of pesticides and transformation products (TPs) were revealed, totaling 86 detections. Overall, 18 parent pesticide compounds and 5 TPs were identified. Ultimately, this approach is expected to provide added value in pesticide and TPs analysis of food matrices without prior data, minimizing experimental time and costs.
Assuntos
Contaminação de Alimentos , Praguicidas , Verduras , Grécia , Verduras/química , Medição de Risco , Praguicidas/análise , Contaminação de Alimentos/análise , Humanos , Resíduos de Praguicidas/análise , Monitoramento Ambiental/métodosRESUMO
Shengmai Jianghuang San (SMJHS) is a traditional Chinese herbal compound reported to inhibit Nasopharyngeal Carcinoma (NPC) progression and enhance radiosensitivity. However, the specific active ingredients and regulatory mechanisms of SMJHS against NPC, particularly under hypoxic conditions, remain unclear. In this study, Sprague-Dawley (SD) rats were gavaged with Shengmai Jianghuang San (SMJHS), and their blood was collected from the abdominal aorta. UHPLC-Q-Exactive orbitrap MS/MS was used to identify the metabolite profiles of SMJHS drug-containing serum. A molecular network of the active compositions in SMJHS targeting NPC was constructed through network pharmacology and molecular docking. The HIF-1α/VEGF pathway was in key positions. The effects of SMJHS on the proliferation, migration, and radiosensitivity of hypoxic NPC cells were assessed by in vitro experiments. NPC cell lines stably overexpressing HIF-1α were established using a lentivirus to investigate the regulation of HIF-1α/VEGF signaling in hypoxic NPC cells by SMJHS. Through a combination of network pharmacological analysis, cellular biofunctional validation, and molecular biochemical experiments, our study found that SMJHS had an anti-proliferative effect on NPC cells cultured under hypoxic conditions, inhibiting their migration and increasing their radiosensitivity. Additionally, SMJHS suppressed the expression of HIF-1α and VEGFA, exhibiting potential as an effective option for improving NPC treatment.
Assuntos
Medicamentos de Ervas Chinesas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metabolômica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Farmacologia em Rede , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/metabolismo , Ratos , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Farmacologia em Rede/métodos , Metabolômica/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Masculino , Humanos , Simulação de Acoplamento Molecular , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Proliferação de Células/efeitos dos fármacos , Combinação de Medicamentos , Metaboloma/efeitos dos fármacosRESUMO
OBJECTIVES: To unveil the mechanism of the Bufei Huoxue formula (BHF) for chronic obstructive pulmonary disease (COPD) through integrated network pharmacology (NP) and experimental verification. METHODS: LC-MS was first applied to the analysis of both in vitro and in vivo samples from BHF for chemical profiling. Then a ligand library was prepared for NP to reveal the mechanism of BHF against COPD. Finally, verification was performed using an animal model related to the results from the NP. KEY FINDINGS: A ligand library containing 170 compounds from BHF was obtained, while 357 targets related to COPD were filtered to construct a PPI network. GO and KEGG analysis demonstrated that bavachin, paeoniflorin, and demethylation of formononetin were the major compounds for BHF against COPD, which mainly by regulating the PI3K/Akt pathway. The experiments proved that BHF could alleviate lung injury and attenuate the release of TNF-α and IL-6 in the lung and BALF in a dose-dependent manner. Western blot further demonstrated the down-regulated effect of BHF on p-PI3K. CONCLUSION: BHF provides a potent alternative for the treatment of COPD, and the mechanism is probably associated with regulating the PI3K/AKT pathway to alleviate inflammatory injury by bavachin, paeoniflorin, and demethylation of formononetin.
Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Farmacologia em Rede , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Animais , Glucosídeos/farmacologia , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças , Isoflavonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Monoterpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Camundongos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed to elucidate the chemicals and working mechanisms of PS for HUA. UPLC-QE-Orbitrap-MS was applied to identify the main components of PS in vitro and in vivo. RNA sequencing (RNA-seq) was conducted to explore the gene expression profile, and the genes involved were further confirmed by real-time quantitative PCR (RT-qPCR). A total of 39 components were identified from PS, and 13 of them were detected in the rat serum after treating the rat with PS. The kidney tissue injury and serum uric acid (UA), xanthine oxidase (XOD), and cytokine levels were reversed by PS. Meanwhile, renal urate anion transporter 1 (Urat1) and glucose transporter 9 (Glut9) levels were reversed with PS treatment. RNA-seq analysis showed that the PPAR signaling pathway; glycine, serine, and threonine metabolism signaling pathway; and fatty acid metabolism signaling pathway were significantly modified by PS treatment. Further, the gene expression of Slc7a8, Pck1, Mgll, and Bhmt were significantly elevated, and Fkbp5 was downregulated, consistent with RNA-seq results. The PPAR signaling pathway involved Pparα, Pparγ, Lpl, Plin5, Atgl, and Hsl were elevated by PS treatment. URAT1 and PPARα proteins levels were confirmed by Western blotting. In conclusion, this study elucidates the chemical profile and working mechanisms of PS for prevention and therapy of HUA and provides a promising traditional Chinese medicine agency for HUA prophylaxis.
Assuntos
Hiperuricemia , Ácido Oxônico , Plantago , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Animais , Ratos , Ácido Oxônico/efeitos adversos , Masculino , Plantago/química , Ácido Úrico/sangue , Extratos Vegetais/farmacologia , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Xantina Oxidase/metabolismoRESUMO
Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson's symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, aqueous extracts of Lucan broad bean pod valves (BPs) were characterized to evaluate their potential use as adjuvants in severe Parkinson's disease. L-dopa content, quantified by LC-UV, was much higher in BPs than in seeds (28.65 mg/g dw compared to 0.76 mg/g dw). In addition, vicine and convicine, the metabolites responsible for favism, were not detected in pods. LC-ESI/LTQ-Orbitrap/MS2 allowed the identification of the major polyphenolic compounds, including quercetin and catechin equivalents, that could ensure neuroprotection in Parkinson's disease. ESI(±)-FT-ICR MS was used to build 2D van Krevelen diagrams; polyphenolic compounds and carbohydrates were the most representative classes. The neuroprotective activity of the extracts after MPP+-induced neurotoxicity in SH-SY5Y cells was also investigated. BP extracts were more effective than synthetic L-dopa, even at concentrations up to 100 µg/mL, due to the occurrence of antioxidants able to prevent oxidative stress. The stability and antioxidant component of the extracts were then emphasized by using naturally acidic solutions of Punica granatum L., Ribes rubrum L., and gooseberry (Phyllanthus emblica L.) as extraction solvents.
Assuntos
Doença de Parkinson , Extratos Vegetais , Sementes , Vicia faba , Vicia faba/química , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sementes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Antioxidantes/farmacologia , Antioxidantes/química , Linhagem Celular Tumoral , Polifenóis/farmacologia , Polifenóis/química , Levodopa/farmacologiaRESUMO
OBJECTIVE: To elucidate the chemical profile of Xanthocerais lignum's extracts of different polarities and their impact on rheumatoid arthritis (RA), we identified anti-RA markers and predicted their action mechanisms. METHODS: A collagen-induced arthritis rat model was established, and UPLC-Q-Exactive Orbitrap MS technology was employed to analyze and identify the chemical constituents within the alcohol extract of Xanthocerais lignum and its various extraction fractions, as well as their translocation into the bloodstream. Serum spectrum-effect correlation analysis was utilized to elucidate the pharmacodynamic material basis of Xanthocerais lignum against RA and to screen for Q-Markers. Finally, the potential anti-RA mechanisms of the Q-Markers were predicted through compound-target interaction data and validated using molecular docking techniques. RESULTS: We identified 71 compounds, with flavan-3-ols and flavanones as key components. Of these, 36 were detected in the bloodstream, including 17 original and 19 metabolized forms. Proanthocyanidin A2, dihydroquercetin, catechin, and epicatechin (plus glucuronides) showed potential anti-RA activity. These compounds, acting as Q-Markers, may modulate ERK, NF-κB, HIF-1α, and VEGF in the HIF-1 pathway. CONCLUSIONS: This research clarifies Xanthocerais lignum's pharmacodynamic material basis against RA, identifies 4 Q-Markers, and offers insights into their mechanisms, aiding quality assessment and lead compound development for RA treatment.
Assuntos
Artrite Reumatoide , Biomarcadores , Simulação de Acoplamento Molecular , Extratos Vegetais , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/sangue , Artrite Reumatoide/metabolismo , Ratos , Biomarcadores/sangue , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/sangue , Artrite Experimental/metabolismo , Masculino , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Milk is one of the most widely consumed foods globally. To protect consumer interests, it is essential to establish an analytical method to detect the degree of heating in milk. A novel approach using nano liquid chromatography-orbitrap fusion mass spectrometer was developed for screening and identifing thermally sensitive peptides markers in the milk heating process (below 100 °C). This method integrates untargeted proteomics and chemometric tools to analyze protein quantitation data from differently heat-treated milk. Thirteen potential markers were screened out and identified, and further confirmed using by standard substances. Then, the accurate concentrations of 13 potential markers determined by isotope-dilution ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were further mining the highly specific and thermally sensitive peptides markers. And Four peptides-INLFDTPLETQYVR, FELLGCELNGCTEPLGLK, QFQFIQVAGR, and GEADALNLDGGYIYTAGK-were selected as marker peptides to differentiate normal pasteurized milk from overheated pasteurized milk. The concentrations of INLFDTPLETQYVR ranges from 150 ± 11 µg/L to 350 ± 23 µg/L, while the concentrations of FELLGCELNGCTEPLGLK ranges from 40 ± 5 µg/L to 92 ± 3 µg/L, can distinguish normal pasteurized milk from overheated pasteurized milk. QFQFIQVAGR indicates overheated pasteurized milk at 230 ± 21 µg/L, and GEADALNLDGGYIYTAGK signifies 750 ± 43 µg/L. This study provides new insights for distinguishing overheated pasteurized milk.
Assuntos
Temperatura Alta , Leite , Pasteurização , Proteômica , Animais , Leite/química , Proteômica/métodos , Proteínas do Leite/análise , Proteínas do Leite/química , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas/métodos , BovinosRESUMO
BACKGROUND: In Chinese Pharmacopeia, Picrasma quassioides (PQ) stems and leaves are recorded as Kumu with antimicrobial, anti-cancer, anti-parasitic effects, etc. However, thick stems are predominantly utilized as medicine in many Asian countries, with leaves rarely used. By now, the phytochemistry and bioactivity of PQ leaves are not well investigated. METHODS: An Orbitrap Elite mass spectrometer was employed to comprehensively investigate PQ stems and leaves sourced from 7 different locations. Additionally, their bioactivities were evaluated against 5 fungi, 6 Gram-positive bacteria and 9 Gram-negative bacteria, a tumor cell line (A549), a non-tumor cell line (WI-26 VA4) and N2 wild-type Caenorhabditis elegans. RESULTS: Bioassay results demonstrated the efficacy of both leaves and stems against tumor cells, several bacteria and fungi, while only leaves exhibited anthelmintic activity against C. elegans. A total of 181 compounds were identified from PQ stems and leaves, including 43 ß-carbolines, 20 bis ß-carbolines, 8 canthinone alkaloids, 56 quassinoids, 12 triterpenoids, 13 terpenoid derivatives, 11 flavonoids, 7 coumarins, and 11 phenolic derivatives, from which 10 compounds were identified as indicator components for quality evaluation. Most alkaloids and triterpenoids were concentrated in PQ stems, while leaves exhibited higher levels of quassinoids and other carbohydrate (CHO) components. CONCLUSION: PQ leaves exhibit distinct chemical profiles and bioactivity with the stems, suggesting their suitability for medicinal purposes. So far, the antibacterial, antifungal, and anthelmintic activities of PQ leaves were first reported here, and considering PQ sustainability, the abundant leaves are recommended for increased utilization, particularly for their rich content of PQ quassinoids.
Assuntos
Caenorhabditis elegans , Compostos Fitoquímicos , Picrasma , Folhas de Planta , Caules de Planta , Folhas de Planta/química , Picrasma/química , Animais , Caules de Planta/química , Caenorhabditis elegans/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Humanos , Linhagem Celular Tumoral , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia , Alcaloides/farmacologia , Quassinas/farmacologia , Quassinas/química , Quassinas/isolamento & purificação , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Fungos/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/análiseRESUMO
Nano-particles demonstrating excellent anticancer properties have gradually found application in cancer therapy. However, their widespread use is impeded by their potential toxicity, high cost, and the complexity of the preparation process. In this study, we achieved exosome-like Centella asiatica-derived nanovesicles (ADNVs) through a straightforward juicing and high-speed centrifugation process. We employed transmission electron microscopy and nanoparticle flow cytometry to characterize the morphology, diameter, and stability of the ADNVs. We evaluated the in vitro anticancer effects of ADNVs using Cell Counting Kit-8 and apoptosis assays. Through sequencing and bicinchoninic acid protein analysis, we discovered the abundant presence of proteins and microRNAs in ADNVs. These microRNAs can target various diseases such as cancer and infection. Furthermore, we demonstrated the effective internalization of ADNVs by HepG2 cells, resulting in an increase in reactive oxygen species levels, mitochondrial damage, cell cycle arrest at the G1 phase, and apoptosis. Finally, we analyzed changes in cellular metabolites post-treatment using cell metabolomics techniques. Our findings indicated that ADNVs primarily influence metabolic pathways such as amino acid metabolism and lipid biosynthesis, which are closely associated with HepG2 treatment. Our results demonstrate the potential utility of ADNVs as anticancer agents.
Assuntos
Apoptose , Proliferação de Células , Centella , Exossomos , Metabolômica , Nanopartículas , Extratos Vegetais , Triterpenos , Humanos , Células Hep G2 , Centella/química , Proliferação de Células/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/química , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genéticaRESUMO
2-Benzylbenzimidazoles, or "nitazenes", are a class of novel synthetic opioids (NSOs) that are increasingly being detected alongside fentanyl analogs and other opioids in drug overdose cases. Nitazenes can be 20× more potent than fentanyl but are not routinely tested for during postmortem or clinical toxicology drug screens; thus, their prevalence in drug overdose cases may be under-reported. Traditional analytical workflows utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) often require additional confirmation with authentic reference standards to identify a novel nitazene. However, additional analytical measurements with ion mobility spectrometry (IMS) may provide a path toward reference-free identification, which would greatly accelerate NSO identification rates in toxicology laboratories. Presented here are the first IMS and collision cross section (CCS) measurements on a set of fourteen nitazene analogs using a structures for lossless ion manipulations (SLIM)-orbitrap MS. All nitazenes exhibited two high intensity baseline-separated IMS distributions, which fentanyls and other drug and druglike compounds also exhibit. Incorporating water into the electrospray ionization (ESI) solution caused the intensities of the higher mobility IMS distributions to increase and the intensities of the lower mobility IMS distributions to decrease. Nitazenes lacking a nitro group at the R1 position exhibited the greatest shifts in signal intensities due to water. Furthermore, IMS-MS/MS experiments showed that the higher mobility IMS distributions of all nitazenes possessing a triethylamine group produced fragment ions with m/z 72, 100, and other low intensity fragments while the lower mobility IMS distributions only produced fragment ions with m/z 72 and 100. The IMS, solvent, and fragmentation studies provide experimental evidence that nitazenes potentially exhibit three gas-phase protomers. The cyclic IMS capability of SLIM was also employed to partially resolve four sets of structurally similar nitazene isomers (e.g., protonitazene/isotonitazene, butonitazene/isobutonitazene/secbutonitazene), showcasing the potential of using high-resolution IMS separations in MS-based workflows for reference-free identification of emerging nitazenes and other NSOs.
Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Mobilidade Iônica/métodos , Analgésicos Opioides/química , Analgésicos Opioides/análise , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Benzimidazóis/química , Benzimidazóis/análise , Gases/química , Nitrocompostos/química , Nitrocompostos/análise , Íons/químicaRESUMO
BACKGROUND: Xiaochaihu (XCH) decoction is a traditional Chinese prescription that has been recorded in the pharmacopeia of the People's Republic of China. In China, the XCH decoction is used clinically to treat a variety of tumors, including breast cancer. However, its potential mechanism of action is still undefined. METHODS: The chemical compounds in the XCH decoction were identified via Q Exactive Orbitrap LC-MS/MS. Then, we screened the active ingredients and targets in the XCH decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Next, Cytoscape and Metascape were used to construct an active ingredient-target-disease network, which included a protein-protein interaction (PPI) network, GO enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, we used molecular docking and in vitro experiments to verify the results of network pharmacology analysis. RESULTS: More than 70 major compounds were identified by Q Exactive Orbitrap LC-MS/MS analysis from the XCH decoction. A total of 162 active ingredients and 153 targets related to the XCH decoction and breast cancer were identified, and a compound-target-disease network was constructed. GO and KEGG analyses revealed that the XCH decoction regulated the drug response, apoptosis process, cancer pathway, and PI3K/Akt signaling pathway. Molecular docking and experimental validation indicated that the XCH decoction suppressed proliferation and induced apoptosis in breast cancer cells by regulating the expression of apoptosis-related proteins and inhibiting the PI3K/Akt pathway. CONCLUSIONS: This study suggested that the XCH decoction can be used to treat breast cancer by inhibiting cell proliferation, inducing apoptosis and downregulating the PI3K/Akt signaling pathway.