Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364241

RESUMO

Nanoformulations for delivering nucleotides into cells as vaccinations as well as treatment of various diseases have recently gained great attention. Applying such formulations for a local treatment strategy, e.g., for cancer therapy, is still a challenge, for which improved delivery concepts are needed. Hence, this work focuses on the synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) for a prospective "magnetofection" application. By functionalizing SPIONs with an active catechol ester (CafPFP), polyethyleneimine (PEI) was covalently bound to their surface while preserving the desired nanosized particle properties with a hydrodynamic size of 86 nm. When complexed with plasmid-DNA (pDNA) up to a weight ratio of 2.5% pDNA/Fe, no significant changes in particle properties were observed, while 95% of the added pDNA was strongly bound to the SPION surface. The transfection in A375-M cells for 48 h with low amounts (10 ng) of pDNA, which carried a green fluorescent protein (GFP) sequence, resulted in a transfection efficiency of 3.5%. This value was found to be almost 3× higher compared to Lipofectamine (1.2%) for such low pDNA amounts. The pDNA-SPION system did not show cytotoxic effects on cells for the tested particle concentrations and incubation times. Through the possibility of additional covalent functionalization of the SPION surface as well as the PEI layer, Caf-PEI-SPIONs might be a promising candidate as a magnetofection agent in future.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Polietilenoimina , Estudos Prospectivos , Plasmídeos/genética , Transfecção , DNA
2.
Methods Mol Biol ; 2103: 151-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31879924

RESUMO

Peptide libraries are a highly useful tool for drug development. While most preparations of peptide libraries are laborious during either the synthesis or its screening, the SPOT synthesis offers the possibility of directly synthesizing large numbers of peptides on a planar surface. As a positionally addressable, multiple solid-phase synthesis technique, the synthesis allows a very convenient handling during the screening of that peptide library in a form of an array. This publication will provide protocols for the basic procedures of the SPOT synthesis and references to some important literature regarding that technique and its application.


Assuntos
Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Celulose , Técnicas de Química Sintética , Ciclização , Ésteres/química , Membranas Artificiais , Acoplamento Oxidativo , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação , Técnicas de Síntese em Fase Sólida/instrumentação
3.
J Colloid Interface Sci ; 501: 94-102, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28437702

RESUMO

Poly(pentafluorophenyl methacrylate) (PPFPMA) was first subjected to post-polymerization modification with oligo(ethylene glycol) methyl ether amine (OEG-NH2) and yielded poly(pentafluorophenyl methacrylate)-co-poly(oligo(ethylene glycol methacrylamide)), PPFPMA-co-POEGMAM. These amphiphilic random copolymers can self-assemble into micellar nanoparticles in water having sizes less than 100nm. By tandemly reacting the pentafluorophenyl (PFP) groups in the copolymeric nanoparticles with a dithiol crosslinker, cystamine, redox-responsive nanogels can be formed. The last step of post functionalization with isopropylamine was introduced in order to remove the remaining PFP groups in the nanogels. Stepwise post functionalization can be monitored by FTIR and 19F NMR spectroscopy. Release of a model hydrophobic drug, nile red (NR) from the nanogels, simultaneously encapsulated during micelles formation, can be accelerated in the presence of glutathione (GSH) especially at 37°C. Results from cytocompatibility evaluation suggested that these developed redox-responsive nanogels strongly possessed a potential for applications in controlled delivery.


Assuntos
Preparações de Ação Retardada/química , Géis/química , Metacrilatos/química , Nanopartículas/química , Esterificação , Glutationa/química , Micelas , Oxazinas/administração & dosagem , Oxirredução , Polimerização
4.
Polymers (Basel) ; 8(11)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30974656

RESUMO

Amphiphilic poly(ε-caprolactone)-block-poly[2-(α-d-mannopyranosyloxy) ethyl acrylamide] (PCL-b-PManEA) block copolymers were synthesized via a combination of ring-opening polymerization (ROP), reversible addition-fragmentation chain transfer (RAFT) polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug doxorubicin (DOX). To enhance mucoadhesive property of the resulting DOX-loaded PCL-b-PManEA micelles, Concanavalin A (ConA) lectin was further conjugated with the micelles. Turbidimetric assay using mucin shows that the DOX-loaded PCL-b-PManEA@ConA micelles are mucoadhesive. DOX release from the DOX-loaded PCL-b-PManEA@ConA micelles in artificial urine at 37 °C exhibits an initial burst release, followed by a sustained and slow release over three days. Confocal laser scanning microscope (CLSM) images indicate that the DOX-loaded PCL-b-PManEA@ConA micelles can be effectively internalized by UMUC3 human urothelial carcinoma cells. The DOX-loaded PCL-b-PManEA@ConA micelles exhibit significant cytotoxicity to these cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA