Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biomed Pharmacother ; 177: 116953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955087

RESUMO

The second most common mutation in melanoma occurs in NRAS oncogene, being a more aggressive disease that has no effective approved treatment. Besides, cellular plasticity limits better outcomes of the advanced and therapy-resistant patients. Peroxiredoxins (PRDXs) control cellular processes through direct hydrogen peroxide oxidation or by redox-relaying processes. Here, we demonstrated that PRDX2 could act as a modulator of multiple EMT markers in NRAS-mutated melanomas. PRDX2 knockdown lead to phenotypic changes towards invasion in human reconstructed skin and the treatment with a PRDX mimetic (gliotoxin), decreased migration in PRDX2-deficient cells. We also confirmed the favorable clinical outcome of patients expressing PRDX2 in a large primary melanoma cohort. This study contributes to our knowledge about genes involved in phenotype switching and opens a new perspective for PRDX2 as a biomarker and target in NRAS-mutated melanomas.


Assuntos
Transição Epitelial-Mesenquimal , GTP Fosfo-Hidrolases , Melanoma , Proteínas de Membrana , Mutação , Invasividade Neoplásica , Peroxirredoxinas , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Oncol Lett ; 28(1): 328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38807674

RESUMO

Peroxiredoxins (Prxs) are a ubiquitously expressed family of antioxidant enzymes that either facilitate or inhibit tumorigenesis, depending on the cancer type and Prx isoform. Prx2 is a typical Prx that has a dual role in tumorigenesis and tumor progression. However, the expression of Prx2 and its precise role in cervical cancer remains to be elucidated. Therefore, the present study aimed to investigate the expression of Prx2 and its association with the progression and prognosis of cervical squamous cell cancer (CSCC). In the present study, the clinicopathological data of 105 patients diagnosed with CSCC were collected from the medical record system at Jingzhou Central Hospital, Tongji Medical College of Huazhong University of Science and Technology (Jingzhou, China). Prx2 protein was also detected in 105 CSCC tissues and 40 adjacent peri-tumoral tissues by immunohistochemical staining. The relationships between Prx2 expression and clinicopathological features, vascular endothelial growth factor A (VEGF-A) expression and micro-vessel density (MVD) in CSCC were then analyzed. Progression-free survival (PFS) was also assessed using both univariate and multivariate analyses. The results of the present study demonstrated that the expression of Prx2 was upregulated in CSCC tissues compared with the adjacent peri-tumoral tissues (P<0.001). In addition, higher Prx2 expression was associated with greater depth of stromal invasion (P=0.023) and positive lymph vascular space invasion (P=0.044), while the Prx2 expression level was not associated with age, tumor size, histological grade, lymph node (LN) metastasis or International Federation of Gynecology and Obstetrics (FIGO) stage (all P>0.05). Furthermore, increased Prx2 expression was associated with high MVD (P=0.016), while expression of VEGF-A was not associated with Prx2 expression (P>0.05). Kaplan-Meier analysis showed that patients with high Prx2 expression (log-rank test, P=0.039), high MVD (log-rank test, P=0.015), a higher FIGO stage (log-rank test, P=0.021) and LN metastasis (log-rank test, P=0.022) had a shorter PFS time than patients with low Prx2 expression, low MVD, a lower FIGO stage and without LN metastasis, respectively. Cox proportional hazard regression analysis revealed that expression of Prx2 [hazard ratio (HR), 2.551; 95% confidence interval (CI), 1.056-6.162; P=0.037], MVD (HR, 2.436; CI, 1.034-5.735; P=0.042) and FIGO stage (HR, 1.543; CI, 1.027-2.319; P=0.037) were independent factors for PFS time. In conclusion, the results of the present study suggested that Prx2 could act as a potential biomarker for predicting CSCC progression and prognosis and could be a novel target for antiangiogenic therapy of CSCC.

3.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790661

RESUMO

Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct morphology, phenotypic, and functional profiles: C1 was less proliferative, more migratory and invasive, less sensitive to BRAFis, less dependent on OXPHOS, more sensitive to oxidative stress, and less pigmented; C2 was more proliferative, less migratory and invasive, more sensitive to BRAFis, less sensitive to oxidative stress, and more pigmented; and C3 was less proliferative, more migratory and invasive, less sensitive to BRAFis, more dependent on OXPHOS, more sensitive to oxidative stress, and more pigmented. Hydrogen peroxide plays a central role in oxidative stress and cell signaling, and PRDXs are one of its main consumers. The intrinsically resistant C1 and C3 clones had lower MITF, PGC-1α, and PRDX1 expression, while C1 had higher AXL and decreased pigmentation markers, linking PRDX1 to clonal heterogeneity and resistance. PRDX2 is depleted in acquired BRAFi-resistant cells and acts as a redox sensor. Our results illustrate that decreased pigmentation markers are related to therapy resistance and decreased antioxidant defense.

4.
J Pharm Biomed Anal ; 247: 116247, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815521

RESUMO

Amino acid epimerization, a process of converting L-amino acids to D-amino acids, will lead to modification in the protein structure and, subsequently, its biological function. This modification causes no change in protein m/z and may be overlooked during protein analysis. Aspartic Acid Epimerization (AAE) is faster than other amino acids and could be accelerated by free radicals and peroxides. In this work, a novel and site-specific HPLC method using a chiral stationary phase for determining the AAE in the active site model peptide (AP) of Peroxiredoxin 2 has been developed and validated. The developed method showed good linearity (1 - 200 µg/mL) and recoveries of the limit of quantification (LOQ), low, medium, and high concentrations were between 85% and 115%. The Kinetics of AAE in AP were studied using the developed method, and the results showed that when ascorbic acid and Cu2+ coexisted, the AP epimerized rapidly. The AAE extent increased with time and was positively correlated with hydrogen peroxide generation.


Assuntos
Ácido Aspártico , Domínio Catalítico , Peroxirredoxinas , Cromatografia Líquida de Alta Pressão/métodos , Cinética , Peroxirredoxinas/química , Peroxirredoxinas/análise , Ácido Aspártico/química , Ácido Aspártico/análise , Peptídeos/química , Peptídeos/análise , Estereoisomerismo , Peróxido de Hidrogênio/química , Ácido Ascórbico/química , Ácido Ascórbico/análise , Limite de Detecção , Cobre/química
5.
Fluids Barriers CNS ; 21(1): 37, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654318

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CX3CR-1GFP mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response. METHODS: This study had four parts all examining male adult CX3CR-1GFP mice. Part 1 examined naïve mice. In part 2, mice received an injection 30 µl of autologous blood into right ventricle and were euthanized at 24 h. In part 3, mice underwent intraventricular injection of saline, iron or peroxiredoxin 2 (Prx-2) and were euthanized at 24 h. In part 4, mice received intraventricular iron injection and were treated with either control or clodronate liposomes and were euthanized at 24 h. All mice underwent magnetic resonance imaging to quantify ventricular volume. The ChP immune cell response was examined by combining analysis of GFP(+) immune cells and immunofluorescence staining. RESULTS: IVH and intraventricular iron or Prx-2 injection in CX3CR-1GFP mice all induced ventriculomegaly and activation of ChP immune cells. There were very marked increases in the numbers of ChP epiplexus macrophages, T lymphocytes and neutrophils. Co-injection of clodronate liposomes with iron reduced the ventriculomegaly which was associated with fewer epiplexus and stromal macrophages but not reduced T lymphocytes and neutrophils. CONCLUSION: There is a marked immune cell response at the ChP in IVH involving epiplexus cells, T lymphocytes and neutrophils. The blood components iron and Prx-2 may play a role in eliciting that response. Reduction of ChP macrophages with clodronate liposomes reduced iron-induced ventriculomegaly suggesting that ChP macrophages may be a promising therapeutic target for managing IVH-induced hydrocephalus.


Assuntos
Plexo Corióideo , Modelos Animais de Doenças , Hidrocefalia , Animais , Plexo Corióideo/imunologia , Hidrocefalia/etiologia , Hidrocefalia/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Hemorragia Cerebral Intraventricular/imunologia , Macrófagos/imunologia , Ferro/metabolismo
6.
Pathol Res Pract ; 254: 155080, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219498

RESUMO

Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.


Assuntos
Neoplasias , Peroxirredoxinas , Humanos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio
7.
Cancer Lett ; 587: 216622, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38246224

RESUMO

Triptolide, a natural bioactive compound derived from herbal medicine Tripterygium wilfordii, has multiple biological activities including anti-cancer effect, which is being tested in clinical trials for treating cancers. However, the exact mechanism by which Triptolide exerts its cytotoxic effects, particularly its specific protein targets, remains unclear. Here, we show that Triptolide effectively induces cytotoxicity in gastric cancer cells by increasing reactive oxygen species (ROS) levels. Further investigations reveal that ROS accumulation contributes to the induction of Endoplasmic Reticulum (ER) stress, and subsequently autophagy induction in response to Triptolide. Meanwhile, this autophagy is cytoprotective. Interestingly, through activity-based protein profiling (ABPP) approach, we identify peroxiredoxins-2 (PRDX2), a component of the key enzyme systems that act in the defense against oxidative stress and protect cells against hydroperoxides, as direct binding target of Triptolide. By covalently binding to PRDX2 to inhibit its antioxidant activity, Triptolide increases ROS levels. Moreover, overexpression of PRDX2 inhibits and knockdown of the expression of PRDX2 increases Triptolide-induced apoptosis. Collectively, these results indicate PRDX2 as a direct target of Triptolides for inducing apoptosis. Our results not only provide novel insight into the underlying mechanisms of Triptolide-induced cytotoxic effects, but also indicate PRDX2 as a promising potential therapeutic target for developing anti-gastric cancer agents.


Assuntos
Diterpenos , Fenantrenos , Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Peroxirredoxinas/genética , Diterpenos/farmacologia , Fenantrenos/farmacologia , Autofagia , Apoptose , Compostos de Epóxi/farmacologia
8.
Exp Cell Res ; 435(1): 113925, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211680

RESUMO

MicroRNAs (miRNAs) can function as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target genes. The aberrant expression of miRNAs in neoplasm is extensively associated with tumorigenesis and cancer progression, including esophageal squamous cell carcinoma (ESCC). Our previous investigation has identified the oncogenic roles of Peroxiredoxin2 (PRDX2) in ESCC progression; however, its upstream regulatory mechanism remains to be elucidated. By merging the prediction results from miRWalk2.0 and miRNA differential expression analysis results based on The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) database, eight miRNA candidates were predicted to be the potential regulatory miRNAs of PRDX2, followed by further identification of miR-92a-2-5p as the putative miRNA of PRDX2. Subsequent functional studies demonstrated that miR-92a-2-5p can suppress ESCC cell proliferation and migration, as well as tumor growth in subcutaneous tumor xenograft models, which might be mediated by the suppression of AKT/mTOR and Wnt3a/ß-catenin signaling pathways upon miR-92a-2-5p mimic transfection condition. These data revealed the tumor suppressive functions of miR-92a-2-5p in ESCC by targeting PRDX2.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Animais
9.
EJHaem ; 4(2): 459-462, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206257

RESUMO

We investigated the proteins of erythrocytes from stem cell transplantation patients and found decreased expression of band3 and C-terminal-truncated peroxiredoxin 2 (PRDX2) only during severe graft-versus-host disease (GVHD), using time-of-flight mass spectrometry (TOF-MS) analysis and Western blotting. During the same period, PRDX2 dimerization and calpain-1 activation were observed, indicating severe oxidative stress. We also found a putative cleavage site for calpain-1 in the C-terminal-truncated site of PRDX2. Decreased band3 expression impairs the plasticity and stability of erythrocytes, and C-terminal-truncated PRDX2 induces irreversible dysfunction of antioxidant activity. These effects may exacerbate microcirculation disorders and the progression of organ dysfunction.

10.
J Cereb Blood Flow Metab ; 43(9): 1475-1489, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37113078

RESUMO

Both monocyte-derived macrophages (MDMs) and brain resident microglia participate in hematoma resolution after intracerebral hemorrhage (ICH). Here, we utilized a transgenic mouse line with enhanced green fluorescent protein (EGFP) labeled microglia (Tmem119-EGFP mice) combined with a F4/80 immunohistochemistry (a pan-macrophage marker) to visualize changes in MDMs and microglia after ICH. A murine model of ICH was used in which autologous blood was stereotactically injected into the right basal ganglia. The autologous blood was co-injected with CD47 blocking antibodies to enhance phagocytosis or clodronate liposomes for phagocyte depletion. In addition, Tmem119-EGFP mice were injected with the blood components peroxiredoxin 2 (Prx2) or thrombin. MDMs entered the brain and formed a peri-hematoma cell layer by day 3 after ICH and giant phagocytes engulfed red blood cells were found. CD47 blocking antibody increased the number of MDMs around and inside the hematoma and extended MDM phagocytic activity to day 7. Both MDMs and microglia could be diminished by clodronate liposomes. Intracerebral injection of Prx2 but not thrombin attracted MDMs into brain parenchyma. In conclusion, MDMs play an important role in phagocytosis after ICH which can be enhanced by CD47 blocking antibody, suggesting the modulation of MDMs after ICH could be a future therapeutic target.


Assuntos
Antígeno CD47 , Microglia , Camundongos , Animais , Microglia/metabolismo , Antígeno CD47/metabolismo , Antígeno CD47/uso terapêutico , Ácido Clodrônico/farmacologia , Ácido Clodrônico/metabolismo , Ácido Clodrônico/uso terapêutico , Lipossomos/metabolismo , Macrófagos/metabolismo , Hemorragia Cerebral/metabolismo , Camundongos Transgênicos , Hematoma/metabolismo
11.
Cell Chem Biol ; 30(3): 295-307.e5, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36889312

RESUMO

The peroxiredoxin (PRDX) family is a class of antioxidant enzymes with peroxidase activity. Human PRDXs currently have six members (PRDX1-6), which are gradually becoming potential therapeutic targets for major diseases such as cancer. In this study, we reported ainsliadimer A (AIN), a sesquiterpene lactone dimer with antitumor activity. We found that AIN directly targets Cys173 of PRDX1 and Cys172 of PRDX2 and then inhibits their peroxidase activities. As a result, the level of intracellular ROS increases, causing oxidative stress damage in mitochondria, inhibiting mitochondrial respiration, and significantly inhibiting ATP production. AIN inhibits the proliferation and induces apoptosis of colorectal cancer cells. Additionally, it inhibits tumor growth in mice and the growth of tumor organoid models. Therefore, AIN can be one of the natural compounds targeting PRDX1 and PRDX2 in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Peroxirredoxinas , Animais , Humanos , Camundongos , Antioxidantes , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Espécies Reativas de Oxigênio
12.
Neurochem Res ; 48(7): 2129-2137, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808393

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by dopaminergic neuron loss, which is related to excessive reactive oxygen species (ROS) accumulation. Endogenous peroxiredoxin-2 (Prdx-2) has potent anti-oxidative and anti-apoptotic effects. Proteomics studies revealed plasma levels of Prdx-2 were significantly lower in PD patients than in healthy individuals. For further study of the activation of Prdx-2 and its role in vitro, SH-SY5Y cells and the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) were used to model PD. ROS content, mitochondrial membrane potential, and cell viability were used to assess the effect of MPP+ in SH-SY5Y cells. JC-1 staining was used to determine mitochondrial membrane potential. ROS content was detected using a DCFH-DA kit. Cell viability was measured using the Cell Counting Kit-8 assay. Western blot detected the protein levels of tyrosine hydroxylase (TH), Prdx-2, silent information regulator of transcription 1 (SIRT1), Bax, and Bcl-2. The results showed that MPP+-induced accumulation of ROS, depolarization of mitochondrial membrane potential, and reduction of cell viability occurred in SH-SY5Y cells. In addition, the levels of TH, Prdx-2, and SIRT1 decreased, while the ratios of Bax and Bcl-2 increased. Then, Prdx-2 overexpression in SH-SY5Y cells showed significant protection against MPP+ -induced neuronal toxicity, as evidenced by the decrease in ROS content, increase in cell viability, increase in the level of TH, and decrease in the ratios of Bax and Bcl-2. Meanwhile, SIRT1 levels increase with the level of Prdx-2. This suggests that the protection of Prdx-2 may be related to SIRT1. In conclusion, this study indicated that overexpression of Prdx-2 reduces MPP+-induced toxicity in SH-SY5Y cells and may be mediated by SIRT1.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proteína X Associada a bcl-2/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Doença de Parkinson/metabolismo , Sirtuína 1/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neurônios Dopaminérgicos , Apoptose , Sobrevivência Celular
13.
Oncol Res ; 32(1): 213-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188679

RESUMO

Hepatocellular carcinoma (HCC), a common malignancy worldwide, still lacks effective clinical treatment. The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms. In our study, we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE, LC-MS, and ELISA. Subsequently, we demonstrated the high expression of peroxiredoxin 2 (PRDX2) in HCC based on the TCGA database and clinical sample analysis. Furthermore, PRDX2 overexpression enhanced the viability of HCC cells. And PRDX2 silencing induced senescence of HCC cells. In vivo, knockdown of PRDX2 significantly reduced the weight of xenograft tumors. PRDX2 also was found to activate the Wnt/ß-catenin pathway by inducing ß-catenin nuclear translocation. Consequently, we proved that silencing PRDX2 could inhibit proliferation and Wnt/ß-catenin pathway while promoting senescence in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Peroxirredoxinas , Humanos , beta Catenina/genética , Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Neoplasias Hepáticas/genética , Peroxirredoxinas/genética , Animais , Via de Sinalização Wnt
14.
ACS Biomater Sci Eng ; 8(12): 5210-5220, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36446128

RESUMO

Synthetic lethality is a pragmatic targeted cancer therapy approach in which cancer cells harboring genetic alterations are exploited for the specific killing of cancer cells. Earlier, we have established a synthetic lethal (SL) interaction between two genes that are CHK2 and PRDX2 in colorectal cancer (CRC) cells. The SL interaction between CHK2 and PRDX2 resulted in selective targeting of CHK2-defective CRC cells. N-Carbamoyl alanine (NCA) is a PRDX2 inhibitor and is a peptide-like organic compound, which degrades after oral administration in harsh gastric pH. To overcome the limitations of NCA, a chitosan-based nanocarrier was developed for the entrapment of NCA. In this study, we targeted the SL interaction between PRDX2 and CHK2 using NCA-loaded chitosan nanoparticles (NCA-Chit NPs) to selectively inhibit the CHK2-null HCT116 cells. NCA-Chit NPs were assessed for various physicochemical characterizations such as the hydrodynamic diameter (size), zeta potential, and polydispersity index using a Zetasizer. Additionally, morphological studies for the shape and size of NPs were confirmed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Cellular uptake of NPs was confirmed using confocal microscopy, which exhibited that nanoparticles were able to internalize into the HCT116 cells. Blank Chit NPs were found to be cytocompatible as they did not exert any cytotoxic effects on hTERT, L929, and Caco-2 cells (intestinal epithelial cells). Importantly, NCA-Chit NPs were quite hemocompatible also. In the form of an NCA-chitosan nanoformulation, the efficacy was enhanced by about 8 times compared to free form of NCA towards selective killing of CHK2-null HCT116 cells as compared to HCT116 cells. The chitosan-based nanoformulation for NCA was developed to augment the efficacy of the NCA for enhanced cell death of colorectal cancer cells having CHK2 defects.


Assuntos
Quitosana , Neoplasias Colorretais , Nanopartículas , Humanos , Quitosana/farmacologia , Células CACO-2 , Nanopartículas/uso terapêutico , Nanopartículas/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Peroxirredoxinas/genética
15.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36290612

RESUMO

In Alzheimer's disease, reactive oxygen species (ROS) are generated by the deposition of amyloid-beta oligomers (AßOs), which represent one of the important causes of neuronal cell death. Additionally, AßOs are known to induce autophagy via ROS induction. Previous studies have shown that autophagy upregulation aggravates neuronal cell death. In this study, the effects of peroxiredoxin 2 (Prx2), a member of the peroxidase family of antioxidant enzymes, on regulating AßO-mediated autophagy were investigated. Prx2 decreased AßO-mediated oxidative stress and autophagy in N2a-APPswe cells. Further, we examined the relationship between the neuronal protective effect of Prx2 and a decrease in autophagy. Similar to the effects of N-acetyl cysteine, Prx2 decreased AßO-induced ROS and inhibited p62 protein expression levels by downregulating the activation of NRF2 and its translocation to the nucleus. In addition, treatment with 3-methyladenine, an autophagy inhibitor, ameliorates neuronal cell death. Overall, these results demonstrate that the Prx2-induced decrease in autophagy was associated with the inhibition of ROS via the ROS-NRF2-p62 pathway in N2a-APPswe cells. Therefore, our results revealed that Prx2 is a potential therapeutic target in anti-Alzheimer therapy.

16.
Int J Mol Sci ; 23(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35628331

RESUMO

Chronic rhinosinusitis (CRS) is a prevalent, multifaceted inflammatory condition affecting the nasal cavity and the paranasal sinuses, frequently accompanied by formation of nasal polyps (CRSwNP). This apparently uniform clinical entity is preceded by heterogeneous changes in cellular and molecular patterns, suggesting the presence of multiple CRS endotypes and a diverse etiology. Alterations of the upper airway innate defense mechanisms, including antimicrobial and antioxidant capacity, have been implicated in CRSwNP etiology. The aim of this study was to investigate mRNA expression patterns of antioxidative enzymes, including superoxide dismutase (SOD) and peroxiredoxin-2 (PRDX2), and innate immune system defense players, namely the bactericidal/permeability-increasing fold-containing family A, member 1 (BPIFA1) and PACAP family members, particularly adenylate-cyclase-activating polypeptide receptor 1 (ADCYAP1) in nasal mucosa and nasal polyps from CRSwNP patients. Additional stratification based on age, sex, allergic comorbidity, and disease severity was applied. The results showed that ADCYAP1, BPIFA1, and PRDX2 transcripts are differentially expressed in nasal mucosa and scale with radiologically assessed disease severity in CRSwNP patients. Sinonasal transcriptome is not associated with age, sex, and smoking in CRSwNP. Surgical and postoperative corticosteroid (CS) therapy improves endoscopic appearance of the mucosa, but variably reverses target gene expression patterns in the nasal cavity of CRSwNP patients. Transcriptional cross-correlations analysis revealed an increased level of connectedness among differentially expressed genes under inflammatory conditions and restoration of basic network following CS treatment. Although results of the present study imply a possible engagement of ADCYAP1 and BPIFA1 as biomarkers for CRSwNP, a more profound study taking into account disease severity and CRSwNP endotypes prior to the treatment would provide additional information on their sensitivity.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Doença Crônica , Humanos , Inflamação/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/complicações , Pólipos Nasais/genética , Estresse Oxidativo/genética , Rinite/complicações , Rinite/genética , Sinusite/complicações , Sinusite/genética
17.
Phytomedicine ; 98: 153932, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104762

RESUMO

BACKGROUND: Globally, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Oxaliplatin based treatments are frequently used as chemotherapeutic methods for CRC, however, associated side effects and drug resistance often limit their clinical application. Dihydroartemisinin (DHA) induces apoptosis in various cancer cells by increasing reactive oxygen species (ROS) production. However, the direct target of DHA and underlying molecular mechanisms in oxaliplatin-mediated anti-tumor activities against CRC are unclear. METHODS: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, and colony formation assays to investigate cell phenotype alterations and ROS generation. We also used quantitative Real-Time PCR (qRT-PCR) and western blotting to measure relative gene and protein expression. Finally, an in vivo mouse xenograft model was used to assess the anti-tumor activity of oxaliplatin and DHA alone, and combinations. RESULTS: DHA synergistically enhanced the anti-tumor activity of oxaliplatin in colon cancer cells by regulating ROS-mediated ER stress, signal transducer and activator of transcription 3 (STAT3), C-Jun-amino-terminal kinase (JNK), and p38 signaling pathways. Mechanistically, DHA increased ROS levels by inhibiting peroxiredoxin 2 (PRDX2) expression, and PRDX2 knockdown sensitized DHA-mediated cell growth inhibition and ROS production in CRC cells. A mouse xenograft model showed strong anti-tumor effects from combination treatments when compared with single agents. CONCLUSIONS: We demonstrated an improved therapeutic strategy for CRC patients by combining DHA and oxaliplatin treatments.

18.
Protein Pept Lett ; 28(12): 1323-1329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34749598

RESUMO

BACKGROUND: The increasing incidence and mortality rate of HCC is a major concern, especially for developing countries of the world. Hence, extensive research is being carried out in order to explore new approaches for developing successful therapeutic strategies for HCC. The controversial role of oxidative stress in the prognosis and treatment of various diseases such as cancer has become an area of great interest and intrigue for many scientists throughout the world. OBJECTIVE: We aim to investigate the role of induced oxidative stress on the suppression of HCC Huh-7 cancerous cells as a therapeutic approach. METHODS: Induction of oxidative stress via H2O2 treatment produced cell cytotoxicity in a dose dependent manner and also led to the overexpression of GSTP-1 and PRX-2. The expression of GSTP- 1 and PRX-2 was compared in HCC Huh-7 treated, untreated cells and normal hepatocytes using immunocytochemistry. Furthermore, the effects of oxidative stress on cell cycle arrest were also studied through flow cytometry. RESULTS: Our study demonstrated the inhibition of cancer cell proliferation as a result of H2O2 induction by arresting the cell cycle at the G2 phase. CONCLUSION: The induction of oxidative stress could be a potential therapeutic approach for treating HCC in the future. GSTP-1 and PRX-2 can serve as substantial therapeutic targets for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Glutationa S-Transferase pi/metabolismo , Neoplasias Hepáticas/epidemiologia , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/terapia
19.
Biomolecules ; 11(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946699

RESUMO

The choroid plexus (CP) is the primary source of cerebrospinal fluid in the central nervous system. Recent evidence indicates that inflammatory pathways at the CP may be involved in hydrocephalus development. Peroxiredoxin 2 (Prx2) is a major component of red blood cells. Extracellular Prx2 is proinflammatory, and its release after red blood cell lysis may contribute to hydrocephalus after intraventricular hemorrhage. This study aimed to identify alterations in CP macrophages and dendritic cells following intracerebroventricular Prx2 injection and investigate the relationship between macrophages/dendritic cells and hydrocephalus. There were two parts to this study. In the first part, adult male Sprague-Dawley rats received an intracerebroventricular injection of Prx2 or saline. In the second part, Prx2 was co-injected with clodronate liposomes or control liposomes. All animals were euthanized at 24 h after magnetic resonance imaging. Immunohistochemistry was used to evaluate macrophages in CP, magnetic resonance imaging to quantify hydrocephalus, and histology to assess ventricular wall damage. The intracerebroventricular injection of Prx2 not only increased the OX-6 positive cells, but it also altered their location in the CP and immunophenotype. Co-injecting clodronate liposomes with Prx2 decreased the number of macrophages and simultaneously attenuated Prx2-induced hydrocephalus and ventricular wall damage. These results suggest that CP macrophages play an essential role in CP inflammation-induced hydrocephalus. These macrophages may be a potential therapeutic target in post-hemorrhagic hydrocephalus.


Assuntos
Plexo Corióideo/imunologia , Ácido Clodrônico/administração & dosagem , Hidrocefalia/patologia , Peroxirredoxinas/efeitos adversos , Animais , Anticorpos Monoclonais/metabolismo , Modelos Animais de Doenças , Hidrocefalia/induzido quimicamente , Hidrocefalia/imunologia , Infusões Intraventriculares , Lipossomos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
20.
Aging (Albany NY) ; 13(8): 11170-11187, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33819194

RESUMO

Colon cancer stem cells (CCSCs) play an important role in facilitating colon cancer occurrence, metastasis and drug resistance. The results of our previous studies confirmed that the well-studied antioxidant gene peroxiredoxin-2 (PRDX2) promotes colon cancer progression. However, the underlying function and mechanisms associated with PRDX2 remodeling in the context of CCSCs have remained poorly studied. In our present study, we demonstrated that PRDX2 is highly expressed in CD133/CD44-positive colon cancer tissues and spheroid CD133+CD44+ CCSCs. PRDX2 overexpression was shown to be closely correlated with CD133+CD44+ CCSCs in colon cancer. Furthermore, PRDX2 depletion markedly suppressed CD133+CD44+ CCSC stemness maintenance, tumor initiation, migration and invasion and liver metastasis. Furthermore, the expression of various EMT markers and Wnt/ß-catenin signaling proteins was altered after PRDX2 inhibition. In addition, PRDX2 knockdown led to increased ROS production in CD133+CD44+ CCSCs, sensitizing CCSCs to oxidative stress and chemotherapy. These results suggest that PRDX2 could be a possible therapeutic target in CCSCs.


Assuntos
Neoplasias do Colo/patologia , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas/patologia , Peroxirredoxinas/metabolismo , Animais , Colo/patologia , Neoplasias do Colo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Peroxirredoxinas/genética , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA