Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioresour Technol ; 412: 131385, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39222862

RESUMO

Sewage sludge derived fertilizer is a promising solution for phosphorus (P) recovery from biowaste, however, the inherent iron content in the sludge ash (SSA) impedes the P availability of the fused calcium magnesium phosphate fertilizer (FCMP). To achieve the goal of iron removal during the process, carbothermal reduction was adopted for the first time and the performance of carbon addition was systematically evaluated. Results showed that carbon addition at 4.50 % significantly increased the P availability from 9.50 % to 11.00 % and decreased the required amounts of calcium/magnesium. Moreover, ferrophosphate with 20.20 % P can be produced and the melting point of the system can be reduced by manipulating carbon addition. Finally, a process design was provided for the co-production of FCMP and ferrophosphate. This study highlights the addition of carbon to facilitate iron removal in SSA for the production of FCMP with enhanced bioavailability at a reduced energy consumption scenario.


Assuntos
Fertilizantes , Ferro , Fosfatos , Esgotos , Esgotos/química , Ferro/química , Fosfatos/química , Disponibilidade Biológica , Carbono/química , Fósforo
2.
Water Res ; 266: 122361, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39244864

RESUMO

This paper examines the acid leaching efficiencies of Fe and P from vivianite slurry (VS, Fe3(PO4)2·8H2O), which is magnetically separated from anaerobic digested sludge, and elaborates on Fe and P reuse routes. The characteristics and dissolution behavior of raw VS in hydrochloric, sulfuric, phosphoric, oxalic, and citric acids are investigated. Results reveal that the primary impurities in VS are organic matter, other phosphate compounds, and Mg present in the vivianite crystal structure. Hydrochloric and sulfuric acids could effectively extract P (90%) from VS at an optimal hydrogen-to-phosphorus (H⁺/P) ratio of 2.5, compared with sewage sludge ash (SSA) that normally needs an H⁺/P ratio greater than 3. Hence, VS can be employed as an alternative P resource following a similar recovery route used with SSA. However, in comparison to SSA, VS use can decrease acid consumption in P extraction and the requirement for the extensive purification of cationic impurities. Furthermore, oxalic acid effectively facilitates the separation of P and Fe in VS by precipitating Fe as insoluble ferrous oxalate in acidic conditions, leading to a high Fe recovery rate of 95%. The recovery and reuse of Fe through the oxalic acid route further improves the feasibility of VS as an alternate resource.

3.
Water Res ; 265: 122250, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39154399

RESUMO

The reducibility of iron oxides, depending on their properties, influences the kinetics of dissimilatory iron reduction (DIR) during vivianite recovery in sewage. This study elucidated the correlation between properties of iron oxides and kinetics of DIR during the long-term transformation into vivianite, mediated by Geobacter sulfurreducens PCA and sewage. The positive correlation between surface reactivity of iron oxides and reduction rate constant (k) influenced the terminal vivianite recovery efficiency. Akaganeite with the highest adhesion work and surface energy required the lowest reduction energy (Ea), obtained the highest k of 1.36 × 10-2 day-1 and vivianite recovery efficiency of 43 %. The vivianite yield with akaganeite as iron source was 76-164 % higher than goethite, hematite, feroxyhyte, and ferrihydrite in sewage. The distribution of P with akaganeite during DIR in sewage further suggested a more efficient pathway of direct vivianite formation via bio-reduced Fe(II) rather than indirect reduction of ferric phosphate precipitates. Thus, akaganeite was screened out as superior iron source among various iron oxides for vivianite recovery, which provided insights into the fate of iron sources and the cycle of P in sewage.


Assuntos
Compostos Férricos , Fósforo , Esgotos , Esgotos/química , Compostos Férricos/química , Minerais/química , Ferro/química , Geobacter/metabolismo , Cinética
4.
Environ Technol ; : 1-12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950168

RESUMO

Phosphorus is an indispensable and irreplaceable element in the ecosystem. Based on the ability of ferrate(VI) to remove phosphate by producing iron phosphate, a new method for using ferrate(VI) to treat hypophosphite has been studied. In this study, ferrate was added to the hypophosphate solution in a controlled manner, and the oxidation efficiency of ferrate(VI) on hypophosphate was studied under various initial pH conditions, when the pH value of 6.0, the hypophosphate oxidation rate reached 14.0%. Research findings, Ferrate recovered hypophosphate through precipitation and adsorption under various initial pH conditions. To further investigate the mechanism of hypophosphate recovery, the morphology and microstructure of the deposition were analysed using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The kinetic process of ferrate recovery from hypophosphate was analysed. The recovery process follows second-order reaction kinetics, and the reaction rate is highest at pH 6.0. The value of kA1 is 1.742 × 10-2. This study shows that ferrate (VI) is a promising treatment tool for low-cost phosphate wastewater. Furthermore, this method offers a clean phosphorus recovery process without the generation of harmful substances.

5.
Environ Res ; 246: 118098, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184062

RESUMO

Hydrothermal carbonization (HTC) is a promising alternative to transform biomass waste into a solid carbonaceous material (hydrochar) and a process water with potential for material and energy recovery. In this study, two alternatives for process water treatment by conventional and acid-assisted HTC of swine manure are discussed. Process water from conventional HTC at 180 °C showed high biodegradability (55% COD removal) and methane production (∼290 mL STP CH4 g-1 CODadded) and the treatment in an upflow anaerobic sludge blanket reactor allowed obtaining a high methane production yield (1.3 L CH4 L-1 d-1) and COD removal (∼70%). The analysis of the microbiota showed a high concentration of Synergistota and Firmicutes phyla, with high degradation of organic nitrogen-containing organic compounds. Acid-assisted HTC proved to be a viable option for nutrient recovery (migration of 83% of the P to the process water), which allowed obtaining a solid salt by chemical precipitation with Mg(OH)2 (NPK of 4/4/0.4) and MgCl2 (NPK 8/17/0.5), with a negligible content of heavy metals. The characteristics of the precipitated solid complied with the requirements of European Regulation (2019)/1009 for fertilizers and amendments in agricultural soils, being a suitable alternative for the recycling of nutrients from wastes.


Assuntos
Carbono , Esterco , Animais , Suínos , Anaerobiose , Carbono/metabolismo , Metano , Abastecimento de Água , Temperatura
6.
Sci Total Environ ; 914: 169902, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185149

RESUMO

To investigate the possibility of phosphorus (P) recovery from marine sediment and explore the role of the carbon: nitrogen ratio in affecting the internal P release under anaerobic conditions, we experimented with the external addition of carbon (acetic acid and glucose) and ammonia nitrogen (NH4-N) to expose P release mechanisms. The 24-day anaerobic incubations were conducted with four different carbon: nitrogen dosing groups including no NH4-N addition and COD/N ratios of 100, 50, and 10. The P release showed that extra NH4-N loading significantly suppressed the decomposition of P (p < 0.05) from the marine sediment, the maximum P release was 4.07 mg/L and 7.14 mg/L in acetic acid- and glucose-fed systems, respectively, without extra NH4-N addition. Additionally, the results exhibited that the imbalance of carbon: nitrogen not only failed to induce the production of organic P mineralization enzyme (alkaline phosphatase) in the sediment but also suppressed its activity under anaerobic conditions. The highest enzyme activity was observed in the group without additional NH4-N dosage, with rates of 1046.4 mg/(kg∙h) in the acetic acid- and 967.8 mg/(kg∙h) in the glucose-fed system, respectively. Microbial data analysis indicated that a decrease in the abundance of P release-regulating bacteria, including polyphosphate-accumulating organisms (Rhodobacteraceae) and sulfate-reducing bacteria (Desulfosarcinaceae), was observed in the high NH4-N addition groups. The observed reduction in enzyme activity and suppression of microbial activity mentioned above could potentially account for the inhibited P decomposition in the presence of high NH4-N addition under anaerobic conditions. The produced P-enriched solution from the bioreactors may offer a promising source for future recovery endeavors.


Assuntos
Carbono , Nitrogênio , Anaerobiose , Fósforo , Reatores Biológicos , Sedimentos Geológicos , Acetatos , Glucose
7.
Sci Total Environ ; 904: 166811, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673249

RESUMO

A novel wastewater treatment plant process was constructed to overcome the challenge of simultaneous nitrate removal and phosphorus (P) recovery. The results revealed that the P and nitrate removal efficiency rose from 39.0 % and 48.4 % to 92.8 % and 93.6 % after 136 days of operation, and the total P content in the biofilm (TPbiofilm) rose from 15.8 mg/g SS to 57.8 mg/g SS. Moreover, the increase of TPbiofilm changed the metabolic mode of denitrifying polyphosphate accumulating organisms (DPAOs), increasing the P concentration of the enriched stream to 172.5 mg/L. Furthermore, the acid/alkaline fermentation led to the rupture of the cell membrane, which released poly-phosphate and ortho-phosphate of cell/EPS in DPAOs and released metal­phosphorus (CaP and MgP). In addition, high-throughput sequencing analysis demonstrated that the relative abundance of DPAOs involved in P storage increased, wherein the abundance of Acinetobacter and Saprospiraceae rose from 8.0 % and 4.1 % to 16.1 % and 14.0 %. What's more, the highest P recovery efficiency (98.3 ± 1.1 %) could be obtained at optimal conditions for struvite precipitation (pH = 7.56 and P: N: Mg = 1.87:3.66:1) through the response surface method (RSM) simulation, and the precipitates test analysis indicated that P recovery from biofilm sludge was potentially operable. This research was of great essentiality for exploring the recovery of P from biofilm sludge.


Assuntos
Fósforo , Esgotos , Fósforo/metabolismo , Nitratos/metabolismo , Desnitrificação , Anaerobiose , Reatores Biológicos , Polifosfatos , Biofilmes , Eliminação de Resíduos Líquidos/métodos , Nitrogênio
8.
Bioresour Technol ; 384: 129284, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302767

RESUMO

A novel process was proposed for simultaneous denitrification and phosphorus (P) recovery. The increased nitrate concentration facilitated the activity of denitrifying P removal (DPR) in P enrichment, which stimulated P uptake and storage, making P more readily accessible for release into the recirculated stream. The total P content in the biofilm (TPbiofilm) rose to 54.6 ± 3.5 mg/g SS as the nitrate concentration increased from 15.0 to 25.0 mg/L, while the P concentration of the enriched stream reached 172.5 ± 3.5 mg/L. Moreover, the abundance of denitrifying polyphosphate accumulating organisms (DPAOs) increased from 5.6% to 28.0%, and the increased nitrate concentration facilitated the process of carbon, nitrogen, and P metabolism due to the rise in the genes involved in critical functions of metabolism. Acid/alkaline fermentation analysis indicated that the EPS release was the primary P-release pathway. Additionally, pure struvite crystals were obtained from the enriched stream and fermentation supernatant.


Assuntos
Esgotos , Águas Residuárias , Fósforo/metabolismo , Nitratos , Desnitrificação , Reatores Biológicos , Compostos Orgânicos , Nitrogênio , Eliminação de Resíduos Líquidos
9.
Water Res ; 241: 120138, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267708

RESUMO

Hydrothermal liquefaction has the potential to exploit resources from municipal sewage sludge. It converts most organics into a liquid biofuel (biocrude), concentrates P in the solid residue (hydrochar), and consequently enables its efficient recovery. This study thoroughly evaluated the effects of extraction conditions on P and metal release from hydrochar by nitric acid. Among assessed factors, acid normality (0.02-1 N), liquid-to-solid ratio (5-100 mL/g), and contact time (0-24 h) had positive effects while decreasing eluate pH (0.5-4) improved leaching efficiencies of P and metals. Notably, eluate pH played a dominant role in P leaching and pH < 1.5 was crucial for complete extraction. P and metal leaching from hydrochar have strong interactions and their leaching mechanism was identified as product layer diffusion using the shrinking core model. This suggests that the leaching efficiency is susceptible to agitation and particle size but not temperature. Using 10 mL/g of 0.6 N HNO3 for 2 h was considered the best extraction condition for efficient P leaching (nearly 100%) and minimization of cost and contaminants (heavy metals). Following extraction, adding Ca(OH)2 at a Ca:P molar ratio of 1.7-2 precipitated most P (99-100%) at pH 5-6, while a higher pH (13) synthesized hydroxyapatite. The recovered precipitates had high plant availability (61-100%) of P and satisfactory concentrations of heavy metals as fertilizers in Canada and the US. Overall, this study established reproducible procedures for P recovery from hydrochar and advanced one step closer to wastewater biorefinery.


Assuntos
Metais Pesados , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Durapatita , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos
10.
Sci Total Environ ; 884: 163850, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137372

RESUMO

Carbon materials have been confirmed to promote phosphorus recovery as vivianite through enhancing dissimilatory iron reduction (DIR), which alleviates phosphorus crisis. Carbon black (CB) exhibits contradictory dual roles of cytotoxicity inducer and electron transfer bridge towards extracellular electron transfer (EET). Herein, the effect of CB on vivianite biosynthesis was investigated with dissimilatory iron reduction bacteria (DIRB) or sewage. With Geobacter sulfurreducens PCA as inoculum, the vivianite recovery efficiency increased accompanied with CB concentrations and enhanced by 39 % with 2000 mg·L-1 CB. G. sulfurreducens PCA activated the adaptation mechanism of secreting extracellular polymeric substance (EPS) to resist cytotoxicity of CB. While in sewage, the highest iron reduction efficiency of 64 % was obtained with 500 mg·L-1 CB, which was appropriate for functional bacterial selectivity like Proteobacteria and bio-transformation from Fe(III)-P to vivianite. The balance of CB's dual roles was regulated by inducing the adaptation of DIRB to gradient CB concentrations. This study provide an innovative perspective of carbon materials with dual roles for vivianite formation enhancement.


Assuntos
Fósforo , Fuligem , Esgotos , Compostos Férricos , Matriz Extracelular de Substâncias Poliméricas , Eliminação de Resíduos Líquidos , Fosfatos , Compostos Ferrosos , Bactérias , Ferro
11.
Water Environ Res ; 95(4): e10847, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789466

RESUMO

A batch monopolar reactor was developed for total phosphorus (TP) recovery using electrochemical struvite precipitation. This study involves the optimization of factors using response surface methodology to maximize the TP recovery. The optimal parameters for this study were found to be a pH of 8.40, a retention time of 35 min, a current density of 300 A/m2 , and an interelectrode distance of 0.5 cm, resulting in 97.3% of TP recovery and energy consumption of 2.35 kWh/m3 . A kinetic study for TP removal revealed that at optimum operating conditions, TP removal follows second-order kinetics (removal rate constant(K) = 0.0117 mg/(m2 ·min)). The system performance was compared to the performance of an iron electrocoagulation system. The composition of the precipitate obtained during the optimal runs were analyzed using X-ray diffraction and EDS analysis. X-ray diffraction analysis of the magnesium precipitate revealed the presence of struvite as the only crystalline compound. PRACTITIONER POINTS: Electrochemical struvite precipitation has the potential to recover total phosphorus from anaerobic bioreactor effluent. Optimum conditions for phosphorus recovery was found at a pH of 8.4, retention time of 35 min, current density of 300 A/m2, and interelectrode distance of 0.5 cm. The quadratic model predicted complete (100 %) TP recovery under optimized conditions, whereas 97.3 % recovery was observed under experimental conditions. TP removal under optimum conditions followed second-order rate equation (removal rate constant(K) = 0.0117 mg/(m2 ·min)). XRD analysis of the precipitate revealed struvite as the only crystalline compound.


Assuntos
Fosfatos , Fósforo , Estruvita , Fósforo/química , Fosfatos/química , Compostos de Magnésio/química , Ferro , Eletrocoagulação , Precipitação Química
12.
Bioresour Technol ; 371: 128598, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634877

RESUMO

After the biochar recovery of phosphorus (P), its role in eliminating Cr(VI) is uncertain. In this study, the iron-sulfur biochar (Fe/S@BC) was made by grinding Fe0, S0, and biochar with a ball mill. P-loaded iron-sulfur biochar (P-Fe/S@BC) was produced after recovering P from simulated wastewater and then used to remove Cr(VI) contamination in waterbodies. P-Fe/S@BC got a rich pore structure and more reactive sites through P-recovery. The experiments revealed that P-Fe/S@BC had an enhancement effect on Cr(VI) pollution with removal efficiencies of 76.9 % ∼ 99.4 %, all greater than Fe/S@BC (58.2 %). In particular, 25P-Fe/S@BC (with 6.55 mg P/g) had the most significant advantage. The combination of physical adsorption, electrostatic attraction, and precipitation contributed to Cr(VI) removal. This is an efficient strategy for reusing Fe/S@BC followed by P-recovery, intending to improve the Cr(VI) removal effect and achieve the sustainable use of P resources and wastes.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Cromo/química , Adsorção
13.
J Environ Manage ; 332: 117373, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708598

RESUMO

Oil-based drill cutting ash (OBDCA) was treated by alkali melting-hydrothermal method and used as novel adsorbent (AM-HT-OBDCA) for the recovery of phosphorus (P) in water body. The experiment parameter for preparation of AM-HT-OBDCA was optimized, including alkali melting ratio (MOBDCA: MNaOH), alkali melting temperature and hydrothermal temperature. The adsorption process of phosphorus on AM-HT-OBDCA was fit well with the pseudo-second-order model and the Langmuir model. The calculated theoretic adsorption capacity of phosphorus on AM-HT-OBDCA was 62.9 mg/g. The adsorption behavior was spontaneous and endothermic. The effect of pH value and interfering ions on the adsorption of phosphorus in AM-HT-OBDCA was investigated. The main existing form of adsorbed phosphorus on AM-HT-OBDCA was sodium hydroxide extraction form phosphorus (NaOH-P), including iron form phosphorus (Fe-P) and aluminum form phosphorus (Al-P). Precipitation and ligand exchange were the main mechanisms of phosphorus adsorption on AM-HT-OBDCA. The AM-HT-OBDCA used for phosphorus adsorption (AM-HT-OBDCA-P) could be further utilized as fertilizer to promote plant growth. The results of this study provide fundamental data and evaluation support for resource utilization of OBDCA. These results will also provide a reference for the adsorption and recovery utilization of phosphorus using solid waste-based adsorbent.


Assuntos
Álcalis , Poluentes Químicos da Água , Hidróxido de Sódio , Adsorção , Fósforo , Ferro , Poluentes Químicos da Água/análise , Cinética
14.
Sci Total Environ ; 858(Pt 3): 160098, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370783

RESUMO

High concentration phosphorus wastewater has attracted much attention due to the safety of water ecology and the potential crisis of phosphorus resource, which is caused by large amounts of phosphorus discharging into natural water bodies. Vivianite (Fe3(PO4)2·8H2O) crystallization has been considered as an effective technology for phosphorus recovery. In this study, we develop a potentially low-cost, sustainable approach to recover phosphorus from high concentration phosphorus wastewater using mine drainage as iron source. Inoculated with both sewage and Geobacter, mine drainage was suitable for vivianite recovery from high concentration phosphorus wastewater with PO43- concentration between 6 and 18 mM. When the PO43- concentration increased gradually, both phosphorus removal efficiency (RP) and vivianite recovery efficiency (RV) decreased significantly. The highest RV of 48 % was obtained with 9 mM PO43- in Geobacter batches (CJ2 batches), which was 15 % higher than that in the paralleled sewage batches (33 % in HJ2). Simultaneously, vivianite accounted for 91 % of the solid phosphate compounds in CJ2 batches due to the enhancement of Geobacter.


Assuntos
Ferro , Fósforo , Águas Residuárias , Fosfatos , Água
15.
J Environ Manage ; 325(Pt B): 116583, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308955

RESUMO

The alternating aerobic/anaerobic biofilm system had been applied for phosphorus (P) enrichment and recovery because of the advantage of low energy consumption and high efficiency. The metal ions and N-acyl-L-homoserine lactones (AHLs) in system were studied to better clarify the mechanism of P uptake/release under metal ion stress. The results indicated that the increase of metal ions stimulated the release of AHLs, and AHLs-guided quorum sensing (QS) enhanced P uptake. Moreover, biomineralization could stimulate the increase of P content in biofilm (Pbiofilm). Meanwhile, some ortho-p was converted to short-chain poly-p in extracellular polymer substance (EPS), and others were transferred into cell through EPS to synthesize poly-p. With the Pbiofilm increased, more P could be absorbed/released due to the shift in the metabolic model of polyphosphate accumulating organisms (PAOs). The release of AHLs between microorganisms was also inhibited when PAOs reached the state of P saturation (75.6 ± 2.5 mg/g SS), which meant that the effect of signaling function would tend to stabilize, and the 169.2 ± 2.6 mg/L P concentration in the enriched solution was obtained due to the P release was inhibited. Moreover, P was rapidly transferred to the new enriched solution after the P was recovered, and PAOs restored its capability of P uptake/release. In addition, 31P-NMR analysis demonstrated that EPS played a major role in PAOs compared to cell, and inorganic phosphorus (IP) played an essential role in the uptake/release of P compared to organic phosphorus (OP). Furthermore, the microbiological analysis showed that Candidatus Accumulibacter was positively correlated with AHLs (P < 0.05). This study provided essential support for clarifying the P metabolism mechanism of PAOs.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Fósforo , Anaerobiose , Biomineralização , Biofilmes , Polifosfatos , Metais
16.
Sci Total Environ ; 862: 160750, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493823

RESUMO

The phosphorus harvest along nitrogen removal in the partial nitritation/anammox (PNA) reactor is promising for saving space and simplifying the management of mainstream wastewater treatment facilities. In this study, the phosphorus recovery from the low-temperature mainstream wastewater was explored through iron phosphate crystallization in a pilot-scale PNA reactor. With the COD-alleviated municipal wastewater as the influent, the ammonium concentration of about 50 mg/L and the phosphorus concentration ranged from 5.4 to 7.1 mg/L, under the temperature of 15 °C and the addition of external ferrous iron of 14 mg/L, the achieved nitrogen removal efficiency and the phosphorus removal efficiency were 37.6 % and 62.7 %, respectively. The good settleability of sludge indicated that the formed iron phosphate was well combined with the biomass. The quantitative analysis confirmed that the main iron phosphate in dry sludge was graftonite, and qualitative analysis confirmed that the equivalent of P2O5 content in the sludge was 5.8 %, which was suitable as fertilizer on agricultural land to realize the direct recycle of discharged phosphorus. In all, this study proposed a pioneering scheme to realize the nitrogen removal and phosphorus cycle in human society and given a meaningful reference for further research and application.


Assuntos
Compostos de Amônio , Águas Residuárias , Humanos , Esgotos/química , Temperatura , Fósforo , Oxidação Anaeróbia da Amônia , Cristalização , Reatores Biológicos , Oxirredução , Compostos de Amônio/química , Nitrogênio , Fosfatos , Ferro , Desnitrificação
17.
Chemosphere ; 307(Pt 2): 135704, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940418

RESUMO

In the last two decades, phosphorus (P) recovery from sewage sludge liquors gained much interest for its high-quality product potential. However, the consistently reported constraints are the low phosphorus availability and the technical-economical difficulties to increase it through chemical acidification. This article discusses the mechanisms of phosphorus dissolution by the biological acidification process (Biological acidification or acidic fermentation) as an alternative to chemical acidification. In addition, we investigate the potential correlation between the phosphorus dissolution and iron phosphate speciation of several types of sludge from different sewage treatment plants and P removal technologies. The results show that the percentage of P dissolution by bioacidification is always higher than the P dissolution by chemical acidification at equal pH for all types of sludge except for the settled primary sludge. The highest P dissolution was recorded for the sludge from the Enhanced Biological P Removal process assisted with Chemical P Removal process (EBPR-CPR) with around 65% of P dissolution. Three mechanisms were identified as contributing to the increased P dissolution by bioacidification: P release by the Polyphosphate Accumulating Organisms (PAO), P dissolution by pH decrease, and P dissolution by a biological activity at acidic pH (3.7-4) that includes iron reduction and aluminum dissolution. The principal component analysis and Pearson's correlation indicate that P dissolution by bioacidification is negatively correlated with the P-bound to ferric iron, hence positively correlated with the P-bound to ferrous iron, which characterizes the sludge from the EBPR-CPR process. This study suggests that the choice of the P removal technology significantly influences the P recovery from sewage sludge liquors.


Assuntos
Fósforo , Esgotos , Alumínio , Compostos Férricos , Ferro/química , Fósforo/química , Polifosfatos , Esgotos/química , Solubilidade , Eliminação de Resíduos Líquidos/métodos
18.
Sci Total Environ ; 838(Pt 4): 156559, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690204

RESUMO

The coming crisis of phosphate rock depletion initiates the development of various solid waste derived P fertilizer. Enhanced biological phosphorus removal (EBPR) sludge is ideal waste biomass to produce biochar-P-fertilizer. Here, the form and transformation pattern of released phosphorus (P) of EBPR sludge biochar pyrolyzed at different temperatures were comprehensively investigated. As pyrolysis temperature increased, the proportion of released polyphosphates (Poly-P) increased. The main Poly-P released from low-temperature biochar was tripolyphosphates (Tri-P), while those released from high-temperature were Tri-P and cyclic Poly-P. The presence of Ca2+ could strongly inhibit P-release of low-temperature biochar (e.g., pyrolyzed at 400 °C, E400) but had little effect on that of high-temperature biochar (e.g., 700 °C, E700). All the P species released from E400 and E700 could be efficiently utilized by Pseudomonas putida. Except for the cyclic Poly-P released from E700, the other P species could also be efficiently utilized by Escherichia coli. In short, Poly-P in biochar could hardly precipitate with Ca2+ and can be utilized by certain soil microorganisms. Therefore, high-temperature EBPR sludge biochar (>600 °C) containing a high proportion of Poly-P could be ideal P fertilizer. This study provides a new insight on pyrolysis way to recover P from the sludge.


Assuntos
Fósforo , Esgotos , Carvão Vegetal , Fertilizantes
19.
Sci Total Environ ; 838(Pt 4): 156612, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690206

RESUMO

This study systematically evaluated phosphorus (P) solubilization from pyrochar and hydrochar derived from both raw sludge and iron-rich sludge. The data indicated, that an increase in thermal treatment temperature and the presence of iron promoted the accumulation of P in both pyrochar (derived at 300, 500, and 800 °C) and hydrochar (derived at 100, 200, and 280 °C). After incubating pyrochar and hydrochar with a phosphate solubilizing microorganism (PSM) (Pseudomonas aeruginosa) for 30 days, PSM significantly promoted the solubilization of P in pyrochar and hydrochar synthesized at low temperatures rather than those at high temperatures, with a 59 % increase for the pyrolysis of raw sludge at 300 °C than that pyrolyzed at 800 °C and a 62 % increase for the hydrothermal treatment of raw sludge at 100 °C than that treated at 280 °C. And the phenomena were more obvious on the char samples derived from iron-rich sludge. The mass balance of different P species in the solid and liquid phases indicated that after incubating with PSM for 30 days, NaOH-P was the main P solubilized from the solid phase of pyrochar and HCl-P was the main P solubilized from the solid phase of hydrochar. Considering P availability to plants, the preliminary economic analysis indicated that the hydrothermal treatment of iron-rich sludge at 100 °C showed the highest economic benefits for P recovery, with the net cost of 28.79 USD/ton wet sludge. This study was useful in giving novel insights into the reuse of char samples as P fertilizer, and also suggested the importance of Pseudomonas aeruginosa and other bacteria in sludge application, particularly in terms of P solubilization.


Assuntos
Fósforo , Esgotos , Fertilizantes/análise , Ferro , Fosfatos , Fósforo/análise , Temperatura
20.
Sci Total Environ ; 839: 156275, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644401

RESUMO

Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it. This study selected four model NRP to investigate their transformation and fate in an EBPR-SPR process. The transformation of NRP in pure water and activated sludge under anaerobic and aerobic conditions were compared. The effects of Ca/P ratio and pH on NRP recovery were studied, and the recovery products of NRP were characterized. It was found that NRP containing phosphoanhydride and phosphoester bonds were more easily hydrolyzed to reactive P (RP) than that containing PC bonds. NRP will be adsorbed and accumulated by activated sludge, and activated sludge will accelerate the conversion of NRP to RP. Tripolyphosphate can form complex precipitation with Ca2+. When multiform P co-existed, Ca2+ preferably complexed with polyphosphate, which harmed RP recovery. The conversion of NRP should be strengthened to recover more P in wastewater. The effect of NRP should be considered when recovering P from wastewater.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Fósforo/química , Esgotos/química , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA