Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Chemosphere ; : 143109, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151579

RESUMO

Sulfide biomineralization is a microorganism-induced process for transforming the environmentally hazardous cadmium into useful resource utilization. This study successfully constructed cadmium sulfide nanoparticles-Rhodopseudomonas palustris (Bio-CdS NPs-R. palustris) hybrids. For the self-assembling hybrids, Bio-CdS NPs were treated as new artificial-antennas to enhance photosynthesis, especially under low light (LL). Bacterial physiological results of hybrids were significantly increased, particularly for cells under LL, with higher enhancement photon harvesting ability. The enhancement included the pigment contents, and the ratio of the peripheral light-harvesting complex Ⅱ (LH2) to light-harvesting Ⅰ (1.33±0.01 under LL), leading to the improvements of light-harvesting, transfer, and antenna conversion efficiencies. Finally, the stimulated electron chain of hybrids improved bacterial metabolism with increased nicotinamide adenine dinucleotide (NADH, 174.5% under LL) and adenosine triphosphate (ATP, 41.1% under LL). Furthermore, the modified photosynthetic units were induced by the up-regulated expression of fixK, which was activated by reduced oxygen tension of the medium for hybrids. fixK up-regulated genes encoding pigments (crt, and bch) and complexes (puf, pucAB, and pucC), leading to improved light-harvesting and transfer, and transform ability. This study provides a comprehensive understanding of the solar energy utilization mechanism of in-situ semiconductor-phototrophic microbe hybrids, contributing to further theoretical insight into their practical application.

2.
Plants (Basel) ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124160

RESUMO

In a scenario of accelerated global climate change, the continuous growth of the world population, and the excessive use of chemical fertiliser, the search for sustainable alternatives for agricultural production is crucial. The present study was conducted to evaluate the plant growth-promoting (PGP) characteristics of two yeast strains, Candida guilliermondii and Rhodotorula mucilaginosa, and the physicochemical characteristics of nanometric capsules and iron oxide nanoparticles (Fe2O3-NPs) for the formulation of nanobiofertilisers. The physiological and productive effects were evaluated in a greenhouse assay using lettuce plants. The results showed that C. guilliermondii exhibited higher tricalcium phosphate solubilisation capacity, and R. mucilaginosa had a greater indole-3-acetic acid (IAA) content. The encapsulation of C. guilliermondii in sodium alginate capsules significantly improved the growth, stomatal conductance, and photosynthetic rate of the lettuce plants. Physicochemical characterisation of the Fe2O3-NPs revealed a particle size of 304.1 nm and a negative Z-potential, which indicated their stability and suitability for agricultural applications. The incorporation of Fe2O3-NPs into the capsules was confirmed by SEM-EDX analysis, which showed the presence of Fe as the main element. In summary, this study highlights the potential of nanobiofertilisers containing yeast strains encapsulated in sodium alginate with Fe2O3-NPs to improve plant growth and photosynthetic efficiency as a path toward more sustainable agriculture.

3.
Heliyon ; 10(14): e32561, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114080

RESUMO

A semi-mechanistic oil palm growth and yield model called Sawit.jl was developed to account for a wide range of planting densities and soil textures under Malaysia's climate conditions. The model comprises components related to meteorology, photosynthesis, energy balance, soil water content, and crop growth. The model simulates instantaneous meteorological properties using daily weather data, calculates simultaneous evaporation from crop and soil with the Shuttleworth-Wallace model, determines soil water content through Darcy's law, and adapts a biochemical C3 model for photosynthesis. The model is also parameterized using updated measurements from the newer tenera oil palm, including temperature-dependent Rubisco kinetics, specific leaf area, and the partitioning of nutrients and dry matter between various tree parts. Sawit.jl was validated using historical field measurement data from seven Malaysian oil palm sites, encompassing palm ages spanning 1-23 years. These seven sites differed in soil type (Inceptisols and Ultisols), planting density (82-299 palms ha-1), soil texture (27-59 % clay and 7-67 % sand), and rainfall (1800-2800 mm yr-1). The model showed overall good accuracy in simulating oil palm parameters (except for trunk weight) across diverse conditions, with model agreement metrics ranging from 6 to 27 % for model absolute errors, -22 to +17 % for model bias, and 0.38 to 0.98 for the Kling-Gupta Efficiency index. The model also predicted the response of oil palm yield to abrupt rainfall changes, such as those during El Niño and La Niña events, while accounting for how soil texture, rainfall, and other meteorological factors influence water deficits and crop photosynthesis. However, model accuracy varied by site, planting density, and oil palm parameter. Model accuracy can be increased by more accurately representing the oil palm microclimate, incorporating fruiting activity, and refining the dry matter partitioning mechanism for the trunk.

4.
Sci Rep ; 14(1): 15265, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961133

RESUMO

Cadmium (Cd) pollution is a serious threat to food safety and human health. Minimizing Cd uptake and enhancing Cd tolerance in plants are vital to improve crop yield and reduce hazardous effects to humans. In this study, we designed three Cd concentration stress treatments (Cd1: 0.20 mg·kg-1, Cd2: 0.60 mg·kg-1, and Cd3: 1.60 mg·kg-1) and two foliar silicon (Si) treatments (CK: no spraying of any material, and Si: foliar Si spraying) to conduct pot experiments on soil Cd stress. The results showed that spraying Si on the leaves reduced the Cd content in brown rice by 4.79-42.14%. Si application increased net photosynthetic rate (Pn) by 1.77-4.08%, stomatal conductance (Gs) by 5.27-23.43%, transpiration rate (Tr) by 2.99-20.50% and intercellular carbon dioxide (CO2) concentration (Ci) by 6.55-8.84%. Foliar spraying of Si significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD) in rice leaves by 9.84-14.09% and 4.69-53.09%, respectively, and reduced the content of malondialdehyde (MDA) by 7.83-48.72%. In summary, foliar Si spraying protects the photosynthesis and antioxidant system of rice canopy leaves, and is an effective method to reduce the Cd content in brown rice.


Assuntos
Antioxidantes , Cádmio , Oryza , Fotossíntese , Folhas de Planta , Silício , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Fotossíntese/efeitos dos fármacos , Silício/farmacologia , Silício/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Poluentes do Solo , Peroxidase/metabolismo
5.
Plant Cell Environ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011936

RESUMO

Understanding photosynthetic acclimation to elevated CO2 (eCO2) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO2 (450 µmol mol-1) and eCO2 (900 µmol mol-1) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (gs) responses were quantified by gas exchange measurements. Opening and closure of individual stomata were imaged in situ, using a novel custom-made microscope. The three crop species acclimated to eCO2 with very different strategies: Cucumber (with the highest stomatal density) acclimated to eCO2 mostly via dynamic gs responses, whereas chrysanthemum (with the lowest stomatal density) acclimated to eCO2 mostly via photosynthetic biochemistry. Tomato exhibited acclimation in both photosynthesis and gs kinetics. eCO2 acclimation in individual stomatal pore movement increased rates of pore aperture changes in chrysanthemum, but such acclimation responses resulted in no changes in gs responses. Although eCO2 acclimation occurred in all three crops, photosynthesis under fluctuating irradiance was hardly affected. Our study stresses the importance of quantifying eCO2 acclimatory responses at different integration levels to understand photosynthetic performance under future eCO2 environments.

6.
Curr Issues Mol Biol ; 46(7): 7187-7218, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39057069

RESUMO

The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.

7.
Toxics ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058108

RESUMO

2,2',4,4'-tetra-bromodiphenytol ether (BDE-47) is one of the ubiquitous organic pollutants in mangrove sediments. To reveal the toxic effects of BDE-47 on mangrove plants, the mangrove species Kandelia obovate was used to investigate the photosynthetic capacity effects and the molecular mechanisms involved after BDE-47 exposure at environment-related levels (50, 500, and 5000 ng g-1 dw). After a 60-day exposure, the photosynthetic capacity was inhibited in K. obovata seedlings, and a decrease in the stomatal density and damage in the chloroplast ultrastructure in the leaves were found. Transcriptome sequencing showed that, following exposure to BDE-47, gene expression in photosynthesis-related pathways was predominantly suppressed in the leaves. The bioinformatics analysis indicated that BDE-47 exerts toxicity by inhibiting photosystem I activity and chlorophyll a/b-binding protein-related genes in the leaves of K. obovata. Thus, this study provides preliminary theoretical evidence for the toxic mechanism effect of BDE-47 on photosynthesis in mangrove species.

8.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063145

RESUMO

Nanotechnology is rapidly advancing towards the development of applications for sustainable plant growth and photosynthesis optimization. The nanomaterial/plant interaction has been intensively investigated; however, there is still a gap in knowledge regarding their effect on crop seed development and photosynthetic performance. In the present work, we apply a priming procedure with 10 and 50 mg/L Pluronic-P85-grafted single-walled carbon nanotubes (P85-SWCNT) on garden pea seeds and examine the germination, development, and photosynthetic activity of young seedlings grown on soil substrate. The applied treatments result in a distorted topology of the seed surface and suppressed (by 10-19%) shoot emergence. No priming-induced alterations in the structural and functional features of the photosynthetic apparatus in 14-day-old plants are found. However, photosynthetic gas exchange measurements reveal reduced stomatal conductance (by up to 15%) and increased intrinsic water use efficiency (by 12-15%), as compared to hydro-primed variants, suggesting the better ability of plants to cope with drought stress-an assumption that needs further verification. Our study prompts further research on the stomatal behavior and dark reactions of photosynthesis in order to gain new insights into the effect of carbon nanotubes on plant performance.


Assuntos
Nanotubos de Carbono , Fotossíntese , Pisum sativum , Sementes , Fotossíntese/efeitos dos fármacos , Nanotubos de Carbono/química , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Pisum sativum/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Germinação/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Poloxâmero/química , Poloxâmero/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Luz
9.
Plant Physiol Biochem ; 214: 108927, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067104

RESUMO

Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.


Assuntos
Tubérculos , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética
10.
Plant Cell Environ ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037305

RESUMO

C4 plants are expected to have faster stomatal movements than C3 species because they tend to have smaller guard cells. However, little is known about how the evolution of C4 photosynthesis influences stomatal dynamics in relation to guard cell size and environmental factors. We studied photosynthetically diverse populations of the grass Alloteropsis semialata, showing that the origin of C4 photosynthesis in this species was associated with a shortening of stomatal guard and subsidiary cells. However, for a given cell size, C4 and C3-C4 intermediate individuals had similar or slower light-induced stomatal opening speeds than C3 individuals. Conversely, when exposed to decreasing light, stomata in C4 plants closed as fast as those in non-C4 plants. Polyploid formation in some C4 plants led to larger stomatal cells and was associated with slower stomatal opening. Conversely, diversification of C4 diploid plants into wetter environments was associated with an acceleration of stomatal opening. Overall, there was significant relationship between light-saturated photosynthesis and stomatal opening speed in the C4 plants, implying that photosynthetic energy production was limiting for stomatal opening. Stomatal dynamics in this wild grass therefore arise from the evolving interplay between photosynthetic physiology and the size and biochemical function of stomatal complexes.

11.
Sci Total Environ ; 947: 174426, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969123

RESUMO

Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of ß-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.


Assuntos
Cucumis sativus , Microplásticos , Fotossíntese , Poliestirenos , Poluentes do Solo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/fisiologia , Fotossíntese/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Ácidos Ftálicos , Plastificantes/toxicidade
12.
Plant Sci ; 347: 112182, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019090

RESUMO

Photosynthesis is the main source of energy for plants to sustain growth and development. Abnormalities in photosynthesis may cause defects in plant development. The elaborate regulatory mechanism underlying photosynthesis remains unclear. In this study, we identified a natural mutant from the Greater Khingan Mountains and named it as "1-T". This mutant had variegated leaf with irregular distribution of yellow and green. Chlorophyll contents and photosynthetic capacity of 1-T were significantly reduced compared to other poplar genotypes. Furthermore, a transcriptome analysis revealed 3269 differentially expressed genes (DEGs) in 1-T. The products of the DEGs were enriched in photosystem I and photosystem II. Three motifs were significantly enriched in the promoters of these DEGs. Yeast one-hybrid, Electrophoretic mobility shift assays and tobacco transient transformation experiments indicated that PdGLKs may bind to the three motifs. Further analysis indicated that these photosystem related genes were also significantly down-regulated in PdGLK-RNAi poplars. Therefore, we preliminarily concluded that the down-regulation of PdGLKs in 1-T may affect the expression of photosystem-related genes, resulting in abnormal photosystem development and thus affecting the growth and development. Our results provide new insights into the molecular mechanism of photosynthesis regulating plant growth.


Assuntos
Perfilação da Expressão Gênica , Fotossíntese , Populus , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Fotossíntese/genética , Regulação da Expressão Gênica de Plantas , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Transcriptoma , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
ACS Nano ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072481

RESUMO

It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.

14.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000100

RESUMO

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Assuntos
Ferro , Fósforo , Plantas , Solo , Fósforo/metabolismo , Ferro/metabolismo , Solo/química , Plantas/metabolismo , Nutrientes/metabolismo , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Microbiologia do Solo
15.
BMC Genomics ; 25(1): 598, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877410

RESUMO

BACKGROUND: Leaves are the nutritional and economic organs of tobacco, and their biomass directly affects tobacco yield and the economic benefits of farmers. In the early stage, our research found that tobacco hybrids have more leaves and larger leaf areas, but the performance and formation reasons of biomass heterosis are not yet clear. RESULTS: This study selected 5 parents with significant differences in tobacco biomass and paired them with hybrid varieties. It was found that tobacco hybrid varieties have a common biomass heterosis, and 45 days after transplantation is the key period for the formation of tobacco biomass heterosis; By analyzing the biomass heterosis of hybrids, Va116×GDH94 and its parents were selected for transcriptome analysis. 76.69% of the differentially expressed genes between Va116×GDH94 and its parents showed overdominant expression pattern, and these overdominant expression genes were significantly enriched in the biological processes of photosynthesis and TCA cycle; During the process of photosynthesis, the overdominant up-regulation of genes such as Lhc, Psa, and rbcl promotes the progress of photosynthesis, thereby increasing the accumulation of tobacco biomass; During the respiratory process, genes such as MDH, ACO, and OGDH are overedominantly down-regulated, inhibiting the TCA cycle and reducing substrate consumption in hybrid offspring; The photosynthetic characteristics of the hybrid and its parents were measured, and the net photosynthetic capacity of the hybrid was significantly higher than that of the parents. CONCLUSION: These results indicate that the overdominant expression effect of differentially expressed genes in Va116×GDH94 and its parents plays a crucial role in the formation of tobacco biomass heterosis. The overdominant expression of genes related to photosynthesis and respiration enhances the photosynthetic ability of Va116×GDH94, reduces respiratory consumption, promotes the increase of biomass, and exhibits obvious heterosis.


Assuntos
Biomassa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vigor Híbrido , Nicotiana , Fotossíntese , Fotossíntese/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Vigor Híbrido/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Transcriptoma , Respiração Celular/genética , Genes Dominantes
16.
Methods Mol Biol ; 2792: 175-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861087

RESUMO

Leaf-level gas exchange is widely used to investigate the largest carbon fluxes in illuminated leaves, offering a nondestructive way to investigate the impact of photorespiration on plant carbon balance. Modern commercial gas exchange systems allow high temporal resolution measurements under changing environments, aiding the development of nonsteady-state approaches for measuring dynamic photosynthetic responses. Here, we describe a nonsteady-state technique for acquiring the dynamic response of net CO2 assimilation to changes in photorespiratory fluxes manipulated by O2 mole fractions. This technique allows for the screening of plant genotypes with variations in their efficiencies of photorespiration under nonsteady-state conditions.


Assuntos
Dióxido de Carbono , Oxigênio , Fotossíntese , Folhas de Planta , Oxigênio/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Respiração Celular
17.
Heliyon ; 10(10): e31552, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831824

RESUMO

The increasing carbon dioxide (CO2) levels in the air pose a direct threat to all living organisms and the environment. Leveraging the ability of plants to absorb CO2 is one of the most effective methods for countering these rising CO2 levels. The present study aimes to develop a combo photosynthetic and chlorophyll-a sensor based on Non-Dispersive Infrared (NDIR) spectroscopy and an optical method. This sensor enables simultaneous, intensive measurement of net photosynthesis and chlorophyll-a content and yields accurate information. Comparative analysis of the efficacy of the sensors to that of a commercial instrument demonstrated that the measurement values obtained from the developed photosynthetic and chlorophyll-a sensors were not significantly different from those acquired with the commercial instrument (portable photosynthesis system LI-6400) and chlorophyll metre (SPAD-502), with a 95 % confidence level. Furthermore, the developed photosynthetic sensor could be used as a new correlation unit for chlorophyll-a content and net photosynthesis. Therefore, the sensor can be used to propose effective plantation processes to reduce atmospheric CO2 levels and in smart farming systems to control the quality of yields.

18.
Plants (Basel) ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931138

RESUMO

Cadmium (Cd), as the most prevalent heavy metal contaminant poses serious risks to plants, humans, and the environment. The ubiquity of this toxic metal is continuously increasing due to the rapid discharge of industrial and mining effluents and the excessive use of chemical fertilizers. Nanoparticles (NPs) have emerged as a novel strategy to alleviate Cd toxicity. Zinc oxide nanoparticles (ZnO-NPs) have become the most important NPs used to mitigate the toxicity of abiotic stresses and improve crop productivity. The plants quickly absorb Cd, which subsequently disrupts plant physiological and biochemical processes and increases the production of reactive oxygen species (ROS), which causes the oxidation of cellular structures and significant growth losses. Besides this, Cd toxicity also disrupts leaf osmotic pressure, nutrient uptake, membrane stability, chlorophyll synthesis, and enzyme activities, leading to a serious reduction in growth and biomass productivity. Though plants possess an excellent defense mechanism to counteract Cd toxicity, this is not enough to counter higher concentrations of Cd toxicity. Applying Zn-NPs has proven to have significant potential in mitigating the toxic effects of Cd. ZnO-NPs improve chlorophyll synthesis, photosynthetic efficiency, membrane stability, nutrient uptake, and gene expression, which can help to counter toxic effects of Cd stress. Additionally, ZnO-NPs also help to reduce Cd absorption and accumulation in plants, and the complex relationship between ZnO-NPs, osmolytes, hormones, and secondary metabolites plays an important role in Cd tolerance. Thus, this review concentrates on exploring the diverse mechanisms by which ZnO nanoparticles can alleviate Cd toxicity in plants. In the end, this review has identified various research gaps that need addressing to ensure the promising future of ZnO-NPs in mitigating Cd toxicity. The findings of this review contribute to gaining a deeper understanding of the role of ZnO-NPs in combating Cd toxicity to promote safer and sustainable crop production by remediating Cd-polluted soils. This also allows for the development of eco-friendly approaches to remediate Cd-polluted soils to improve soil fertility and environmental quality.

19.
Sci Rep ; 14(1): 13314, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858413

RESUMO

Plants respond to biotic and abiotic stress by activating and interacting with multiple defense pathways, allowing for an efficient global defense response. RNA silencing is a conserved mechanism of regulation of gene expression directed by small RNAs important in acquired plant immunity and especially virus and transgene repression. Several RNA silencing pathways in plants are crucial to control developmental processes and provide protection against abiotic and biotic stresses as well as invasive nucleic acids such as viruses and transposable elements. Various notable studies have shed light on the genes, small RNAs, and mechanisms involved in plant RNA silencing. However, published research on the potential interactions between RNA silencing and other plant stress responses is limited. In the present study, we tested the hypothesis that spreading and maintenance of systemic post-transcriptional gene silencing (PTGS) of a GFP transgene are associated with transcriptional changes that pertain to non-RNA silencing-based stress responses. To this end, we analyzed the structure and function of the photosynthetic apparatus and conducted whole transcriptome analysis in a transgenic line of Nicotiana benthamiana that spontaneously initiates transgene silencing, at different stages of systemic GFP-PTGS. In vivo analysis of chlorophyll a fluorescence yield and expression levels of key photosynthetic genes indicates that photosynthetic activity remains unaffected by systemic GFP-PTGS. However, transcriptomic analysis reveals that spreading and maintenance of GFP-PTGS are associated with transcriptional reprogramming of genes that are involved in abiotic stress responses and pattern- or effector-triggered immunity-based stress responses. These findings suggest that systemic PTGS may affect non-RNA-silencing-based defense pathways in N. benthamiana, providing new insights into the complex interplay between different plant stress responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Nicotiana , Plantas Geneticamente Modificadas , Estresse Fisiológico , Transcriptoma , Transgenes , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Inativação Gênica , Interferência de RNA , Perfilação da Expressão Gênica , Fotossíntese/genética
20.
Pest Manag Sci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847471

RESUMO

BACKGROUND: Body-color polymorphisms in insects are often explained by environmental selective advantages. Differential fitness related to body coloration has been demonstrated in Myzus persicae (Sulzer): performance of the red morph is in general better than that of the green morph on tobacco plants. However, the molecular mechanism involved is largely unclear. RESULTS: Here we showed that the red morph of M. persicae had higher expression of a carotenoid desaturase CarD763 in the whole body, salivary gland and saliva relative to the green morph. Also, 18% individuals displayed faded red body color 5 days post dsCarD763 treatment. Furthermore, knockdown of CarD763 in the red morph significantly prolonged the time needed to locate phloem and shortened the duration of phloem feeding. Honeydew production and survival rate decreased as well. In contrast, overexpression of CarD763 in tobacco leaves facilitated aphid feeding, enhanced honeydew production and improved the survival rate of aphids. Compared with those fed by dsGFP aphids, plants infested by dsCarD763-treated aphids had higher ROS accumulation, lower lycopene content and photosynthetic rate, and maximum photon quantum yield. The reverse was true when plants overexpressed CarD763. CONCLUSION: These findings demonstrated that CarD763, a red morph-specific salivary protein, could enhance aphid feeding and early colonization by promoting plant photosynthesis. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA