Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236850

RESUMO

In this work, etonogestrel implants were manufactured using coextrusion. The purpose of the study was to correlate changes in microstructure and transport properties that occurred in etonogestrel implants to drug release mechanisms. The implants consisted of an EVA 28 (28 % vinyl acetate) core containing dispersed and dissolved etonogestrel, and an EVA 15 (15 % vinyl acetate) skin. The drug release was determined to be via diffusion at a controlled rate and governed by implant dimensions. In-vitro release revealed evidence of supersaturation in the implant core and skin, likely from the intense mechanical energy input during the twin-screw manufacturing process. Subsequently during storage under ambient conditions, supersaturation resulted in recrystallization of drug crystals, preferentially in the implant core. Etonogestrel solubility and diffusivity in EVA were determined by permeation experiments and used for release modeling. Drug release from the EVA skin layer deviated from the predicted values due to 1) formation of a drug depletion zone in the core and 2) presence of a stagnant media layer adjacent to the skin. Drug release from implant ends was significantly faster than predicted. Air-filled pores were observed in the implant core using microCT which likely contributed to the faster release from implant ends.

2.
J Pharm Sci ; 112(11): 2752-2755, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673173

RESUMO

Burst release, typical for the drug-loaded electrospun poly(ε-caprolactone) (PCL) scaffolds is unfavorable in case of cytostatics due to the toxic levels reached during the initial implantation period. In the present short communication, we report an unexpected ability of the composite scaffolds made of PCL and water-soluble polyvinylpyrrolidone (PVP) to provide long-term release of widely used anti-cancer drug doxorubicin hydrochloride (DOX-HCl). That effect was observed for electrospun DOX-HCl-loaded composite scaffolds based on PCL and PVP with various mass ratios (100/0, 95/5, 90/10, 75/25 and 50/50). After the morphology and water contact angle studies, it was concluded that PVP content has no effect on the average fiber diameter, while PVP content higher 10 wt. % changes the hydrophobic character of the scaffolds surface (water contact angle of 123.9 ± 3.5°) to superhydrophilic (water contact angle of 0°). Despite the dramatic change in water wettability, by high performance liquid chromatography (HPLC), it was revealed that the PVP content in the scaffolds reduces the DOX-HCl release rate under short (first hours) and long-term (during 1 month) exposure to phosphate buffer saline (PBS). These results are in good agreement with in vitro studies, in which the viability of HeLa cervical cancer cells was higher after 24 h of culture with scaffolds with high PVP content.

3.
J Pharm Sci ; 112(11): 2843-2852, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37279836

RESUMO

Disadvantages of systemically administered immunomodulatory anti-tumor therapies include poor efficacy and high toxicity. Direct intratumoral injection of a drug is often associated with rapid efflux from the site of administration, thus reducing local exposure and therapeutic efficacy, while potentially increasing systemic adverse events. To address this, a sustained release prodrug technology was developed using a transient conjugation (TransConTM) technology to provide long-term high local drug exposure after injection in the tumor while minimizing systemic exposure. TransCon technology for systemic delivery is clinically validated, with multiple compounds in late-stage clinical development and approval of a once-weekly growth hormone for pediatric growth hormone deficiency. As a further application of this technology, this report describes the design, preparation, and functional characterization of hydrogel microspheres as insoluble, yet degradable carrier system. Microspheres were obtained after reaction of PEG-based polyamine dendrimers and bifunctional crosslinkers. Resiquimod, a TLR7/8 agonist, and axitinib, a vascular endothelial growth factor tyrosine kinase inhibitor, were chosen as anti-cancer drugs. The drugs were covalently attached to the carrier by linkers, which released the drugs under physiological conditions. Essentially all resiquimod or axitinib was released over weeks before physical degradation of the hydrogel microsphere was observed. In summary, TransCon Hydrogel technology allows localized sustained-release drug delivery for cancer therapy enabling high local drug concentrations while at the same time ensuring low systemic drug exposure over weeks with a single injection, which may improve the therapeutic index and improve efficacy, while minimizing systemic adverse events. A hydrogel prodrug of resiquimod, TransCon TLR7/8 agonist, is currently being investigated in clinical trials of patients with solid tumors (NCT04799054).


Assuntos
Hidrogéis , Pró-Fármacos , Humanos , Criança , Fator A de Crescimento do Endotélio Vascular , Axitinibe , Receptor 7 Toll-Like , Inibidores da Angiogênese , Hormônio do Crescimento , Sistemas de Liberação de Medicamentos
4.
J Pharm Sci ; 110(7): 2771-2777, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737020

RESUMO

A novel polymeric material, poly(δ-valerolactone-co-allyl-δ-valerolactone) (PVL-co-PAVL), was used to manufacture microparticles (MPs) for sustained drug delivery. PVL-co-PAVL MPs were formulated using a modified oil-in-water approach, followed by a UV-initiated cross-linking process. Prepared MPs had a smooth spherical morphology and cross-linking of the copolymer was found to improve the integrity and thermal stability of the MPs. Paclitaxel (PTX) was successfully loaded into the MPs at a high drug loading capacity, using a post-loading swelling-equilibrium method. In vitro evaluation showed that the PVL-co-PAVL MPs provide sustained release of PTX, which exhibited first-order release kinetics. A subsequent pilot pharmacokinetic study was carried out on the PTX-loaded PVL-co-PAVL MPs. During this study, serum levels of PTX were monitored following subcutaneous administration of the MPs to Sprague-Dawley rats. Overall, the in vivo release of PTX from the MPs was lower than expected based on the in vitro release studies. Detectable serum levels of PTX suggest that sustained release of drug was achieved in vivo. Minimal changes in subcutaneous tissue were observed at the site of injection. Future studies will further examine the localized and systemic distribution of drug following administration in this new polymer-based MP system.


Assuntos
Paclitaxel , Pironas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Polímeros , Ratos , Ratos Sprague-Dawley
5.
J Pharm Sci ; 110(2): 824-832, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33065129

RESUMO

Although an abundance of drug candidates exists which are aimed at the remediation of central nervous system (CNS) disorders, the utility of some are severely limited by their inability to cross the blood brain barrier. Potential drug delivery systems such as the Angiopep family of peptides have shown modest potential; however, there is a need for novel drug delivery candidates that incorporate peptidomimetics to enhance the efficiency of transcytosis, specificity, and biocompatibility. Here, we report on the first in vitro cellular uptake and cytotoxicity study of a peptidomimetic, cationic peptide, L57. It binds to cluster 4 of the low-density lipoprotein receptor-related protein 1 (LRP1) receptor which is expressed in numerous cell types, such as brain endothelial cells. We used early-passage-number brain microvascular endothelial cells and astrocytes harvested from rat pup brains that highly express LRP1, to study the uptake of L57 versus Angiopep-7 (A7). Uptake of L57 and A7 showed a concentration-dependent increase, with L57 being taken up to a greater degree than A7 at the same concentration. Additionally, peptide uptake in LRP1-deficient PEA 10 cells had greatly reduced uptake. Furthermore, L57 demonstrated excellent cell viability versus A7, showing promise as a potential drug delivery vector for CNS therapeutics.


Assuntos
Preparações Farmacêuticas , Receptores de Lipoproteínas , Animais , Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Células Endoteliais , Peptídeos , Ratos
6.
J Pharm Sci ; 109(9): 2719-2728, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473210

RESUMO

A new indole based chalcone molecule MOMIPP induced methuosis mediated cell death in gliobastoma and other cancer cell lines. But the drug was insoluble in water and had a very short plasma half-life. The purpose of this work was to develop a formulation that can provide sustained levels of MOMIPP in vivo. Initial studies established drug solubility in various solvents. N-methyl pyrrolidone (NMP) was determined as an excellent solvent for the drug. Subsequently a poloxamer-407 based thermoreversible gel containing NMP was used to develop the formulation. Rheological studies were performed via oscillatory temperature mode, continuous shear analysis, and oscillatory frequency mode experiments. The mechanical properties of the formulations were tested using a texture profile analyzer. The gelation temperature and time of formulations increased with increasing amounts of NMP. However, the viscosity at 20 °C and storage modulus decreased as the amount of NMP increased. Characterization studies helped to identify the gel formulation that was used to administer the drug orally, sub-cutaneously, and intra-peritoneally. When the gel was given intraperitoneally the target plasma and brain levels of over 5 µM was maintained for about 8 h. Thus, a thermoreversible gel formulation that can deliver MOMIPP in animal studies was successfully developed.


Assuntos
Antineoplásicos , Hidrogéis , Animais , Encéfalo/metabolismo , Géis , Indóis , Poloxâmero/metabolismo , Piridinas , Reologia , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA