Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 161, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390590

RESUMO

Valosin-containing protein (VCP) is a ubiquitously expressed type II AAA+ ATPase protein, implicated in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This study aimed to explore the impact of the disease-causing VCPR191Q/wt mutation on mitochondrial function using a CRISPR/Cas9-engineered neuroblastoma cell line. Mitochondria in these cells are enlarged, with a depolarized mitochondrial membrane potential associated with increased respiration and electron transport chain activity. Our results indicate that mitochondrial hypermetabolism could be caused, at least partially, by increased calcium-induced opening of the permeability transition pore (mPTP), leading to mild mitochondrial uncoupling. In conclusion, our findings reveal a central role of the ALS/FTD gene VCP in maintaining mitochondrial homeostasis and suggest a model of pathogenesis based on progressive alterations in mPTP physiology and mitochondrial energetics.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Mitocôndrias , Poro de Transição de Permeabilidade Mitocondrial , Mutação , Proteína com Valosina , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cálcio/metabolismo
2.
Int J Biol Macromol ; 280(Pt 4): 136244, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368578

RESUMO

Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.

3.
Proc Natl Acad Sci U S A ; 121(43): e2400650121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39405352

RESUMO

Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Sódio , Xenopus laevis , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Sódio/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Permeabilidade , Oócitos/metabolismo , Simulação de Dinâmica Molecular , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/química , Cisteína/metabolismo , Células Receptoras Sensoriais/metabolismo
4.
Polymers (Basel) ; 16(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39408466

RESUMO

As a non-renewable resource, oil faces increasing demand, and the remaining oil recovery rates in existing oil fields still require improvement. The primary objective of this study is to investigate the impact of pore structure parameters on the distribution and recovery of residual oil after polymer flooding by constructing a digital pore network model. Using this model, the study visualizes the post-flooding state of the model with 3DMAX-9.0 software and employs a range of simulation methods, including a detailed analysis of the pore size, coordination number, pore-throat ratio, and wettability, to quantitatively assess how these parameters affect the residual oil distribution and recovery. The research shows that the change in the distribution of pore sizes leads to a decrease in cluster-shaped residual oil and an increase in columnar residual oil. An increase in the coordination number increases the core permeability and reduces the residual oil; for example, when the coordination number increases from 4.3 to 6, the polymer flooding recovery rate increases from 24.57% to 30.44%. An increase in the pore-throat ratio reduces the permeability and causes more residual oil to remain in the throat; for example, when the pore-throat ratio increases from 3.2 to 6.3, the total recovery rate decreases from 74.34% to 63.72%. When the wettability changes from oil-wet to water-wet, the type of residual oil gradually changes from the difficult-to-drive-out columnar and film-shaped to the more easily recoverable cluster-shaped; for example, when the proportion of water-wet throats increases from 0.1:0.9 to 0.6:0.4, the water flooding recovery rate increases from 35.63% to 51.35%. Both qualitative and quantitative results suggest that the digital pore network model developed in this study effectively predicts the residual oil distribution under different pore structures and provides a crucial basis for optimizing residual oil recovery strategies.

5.
Polymers (Basel) ; 16(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339123

RESUMO

Polyolefin separators with worse porous structures and compatibilities mismatch the internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study, a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize pore sizes and in situ-built SSD coatings on porous skeletons. Imported SSD uniformizes pore sizes owing to centralized interface distributions within casting films. Meanwhile, abundant cavitations enable the in situ SSD coating to facilely fix onto porous skeleton surfaces during separator fabrications, which feature simple techniques, low cost, environmental friendliness, and the capability for continuous fabrications. A sturdy SSD coating on the porous skeleton confines thermal shrinkages and offers a superior safety guarantee for LIBs. The abundant sulfonic acid groups of SSD endow PP@SSD with excellent electrolyte affinity, which lowers Li+ transfer barriers and optimizes interfacial compatibility. Therefore, assembled LIBs give the optimal C-rate capacity and cycling stability, holding a capacity retention of 82.7% after the 400th cycle at 0.5 C.

6.
Sci Rep ; 14(1): 20428, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227670

RESUMO

Nowadays, some fracking fluids can enable resourceful extraction of coalbed methane and reduce greenhouse gas emissions. However, their toxicity or corrosiveness will cause harm to downhole workers and pollute groundwater resources. Thus, five kinds of clean composite fracturing fluids were developed in this paper by using starch solution as the matrix and adding various preparations. The change rule of methane adsorption capacity by microstructure changes of coal samples was investigated systematically, and the optimal composite fracturing fluid was determined. The results showed that the new fracturing fluid increased the degree of aromatic ring condensation by 43.3% and the average pore size by 52.1%. Also, the adsorption constants of a value decreased by 11.6% and b value decreased by 23.9%, which can remarkably reduce the methane adsorption. The experimental results provide theoretical support for the clean production of coalbed methane.

7.
Carbohydr Polym ; 344: 122544, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218560

RESUMO

Cellulose-based aerogels offer exceptional promise for oily wastewater treatment, but the challenge of low mechanical strength and limited application functions persists. Inspired by the graded porous structures in the animal skeleton and bamboo stem, we firstly report here a stepwise solvent diffusion-induced phase separation approach for constructing the gradient pore-density three-dimensional (3D) cellulose scaffold (GPDS). Benefiting from the regulation of competitive hydrogen bonding between the anti-solvents and the ionic liquid (IL) in cellulose solution, GPDS exhibits the decreased major channels size and increased minor pores amount gradually along the solvent diffusion direction. These endow GPDS with the characteristics of low density (0.019 g/cm) and super strength (high up to 870 KPa). The application of GPDS in the field of oil-water separation has achieved remarkable results, including oil/organic solvent absorption (13-25 g/gGPDS), immiscible oil-water mixture separation (high efficiency up to 99.8 %, flux > 2000 L/m2·h), and surfactant-stabilized oil-in-water emulsion (efficiency up to 97.7 %). Moreover, a simple hydrophobic treatment further realizes the efficient separation of water-in-oil emulsion (98.5 % efficiency). The as-fabricated GPDS accordingly achieves the multifunctional application in oil-water separation field. Thus, a new avenue is opened to construct 3D cellulose porous scaffold as adsorbent materials in oily wastewater treatment.

8.
Adv Sci (Weinh) ; : e2407538, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283031

RESUMO

Amorphous carbon holds great promise as anode material for sodium-ion batteries due to its cost-effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion-filling sodium storage mechanism is proposed using petroleum coke-derived amorphous carbon as a multi-microcrystalline model. Combining in situ X-ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high-potential sloping capacity. The sodium insertion process occurs in both the pseudo-graphite phase (d002 > 0.370 nm) and graphite-like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low-potential sloping capacity. The sodium filling into accessible closed pores forms quasi-metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion-filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high-performance amorphous carbon anodes.

9.
Angew Chem Int Ed Engl ; : e202415576, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298644

RESUMO

Compared to exploratory development of new structure types, pushing the limits of isoreticular synthesis on a high-performance MOF platform may have higher probability of achieving targeted properties. Multi-modular MOF platforms could offer even more opportunities by expanding the scope of isoreticular chemistry. However, navigating isoreticular chemistry towards best properties on a multi-modular platform is challenging due to multiple interconnected pathways. Here on the multi-modular pacs (partitioned acs) platform, we demonstrate accessibility to a new regime of pore geometry using two independently adjustable modules (framework-forming module 1 and pore-partitioning module 2). A series of new pacs materials have been made. Benzene/cyclohexane selectivity is tuned, progressively, from 4.5 to 15.6 to 195.4 and to 482.5 by pushing the boundary of the pacs platform towards the smallest modules known so far. The exceptional stability of these materials in retaining both porosity and single crystallinity enables single-crystal diffraction studies of different crystal forms (as-synthesized, activated, guest-loaded) that help reveal the mechanistic aspects of adsorption in pacs materials.

10.
Pharmacol Res Perspect ; 12(5): e70005, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320019

RESUMO

The epsilon toxin (Etx) from Clostridium perfringens has been identified as a potential trigger of multiple sclerosis, functioning as a pore-forming toxin that selectively targets cells expressing the plasma membrane (PM) myelin and lymphocyte protein (MAL). Previously, we observed that Etx induces the release of intracellular ATP in sensitive cell lines. Here, we aimed to re-examine the mechanism of action of the toxin and investigate the connection between pore formation and ATP release. We examined the impact of Etx on Xenopus laevis oocytes expressing human MAL. Extracellular ATP was assessed using the luciferin-luciferase reaction. Activation of calcium-activated chloride channels (CaCCs) and a decrease in the PM surface were recorded using the two-electrode voltage-clamp technique. To evaluate intracellular Ca2+ levels and scramblase activity, fluorescent dyes were employed. Extracellular vesicles were imaged using light and electron microscopy, while toxin oligomers were identified through western blots. Etx triggered intracellular Ca2+ mobilization in the Xenopus oocytes expressing hMAL, leading to the activation of CaCCs, ATP release, and a reduction in PM capacitance. The toxin induced the activation of scramblase and, thus, translocated phospholipids from the inner to the outer leaflet of the PM, exposing phosphatidylserine outside in Xenopus oocytes and in an Etx-sensitive cell line. Moreover, Etx caused the formation of extracellular vesicles, not derived from apoptotic bodies, through PM fission. These vesicles carried toxin heptamers and doughnut-like structures in the nanometer size range. In conclusion, ATP release was not directly attributed to the formation of pores in the PM, but to scramblase activity and the formation of extracellular vesicles.


Assuntos
Trifosfato de Adenosina , Toxinas Bacterianas , Cálcio , Canais de Cloreto , Vesículas Extracelulares , Oócitos , Xenopus laevis , Animais , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Canais de Cloreto/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Feminino , Clostridium perfringens/metabolismo
11.
Brain ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312484

RESUMO

Advanced pathological and genetic approaches have revealed that mutations in fused in sarcoma/translated in liposarcoma (FUS/TLS), which is pivotal for DNA repair, alternative splicing, translation and RNA transport, cause familial amyotrophic lateral sclerosis (ALS). The generation of suitable animal models for ALS is essential for understanding its pathogenesis and developing therapies. Therefore, we used CRISPR-Cas9 to generate FUS-ALS mutation in the non-classical nuclear localization signal (NLS), H517D (mouse position: H509D) and genome-edited mice. Fus WT/H509D mice showed progressive motor impairment (accelerating rotarod and DigiGait system) with age, which was associated with the loss of motor neurons and disruption of the nuclear lamina and nucleoporins and DNA damage in spinal cord motor neurons. We confirmed the validity of our model by showing that nuclear lamina and nucleoporin disruption were observed in lower motor neurons differentiated from patient-derived human induced pluripotent stem cells (hiPSC-LMNs) with FUS-H517D and in the post-mortem spinal cord of patients with ALS. RNA sequence analysis revealed that most nuclear lamina and nucleoporin-linking genes were significantly decreased in FUS-H517D hiPSC-LMNs. This evidence suggests that disruption of the nuclear lamina and nucleoporins is crucial for ALS pathomechanisms. Combined with patient-derived hiPSC-LMNs and autopsy samples, this mouse model might provide a more reliable understanding of ALS pathogenesis and might aid in the development of therapeutic strategies.

12.
Heliyon ; 10(17): e37061, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319120

RESUMO

This paper contributed with new findings to understand and characterize a heavy metal adsorption on a composite adsorbent. The synthesized polypyrrole-polyaniline@rice husk ash (PPY-PANI@RHA) was prepared and used as an adsorbent for the removal of hexavalent chromium Cr(VI). The adsorption isotherms of Cr(VI) ions on PPY-PANI@RHA were experimentally determined at pH 2, and at different adsorption temperatures (293, 303, and 313 K). Multi-layer model developed using statistical physics formalism was applied to theoretically analyze and characterize the different interactions and ion exchanges during the adsorption process for the elimination of this toxic metal from aqueous solutions, and to attribute new physicochemical interpretation of the process of adsorption. The physicochemical structures and properties of the synthesized PPY-PANI@RHA were characterized via Fourier transform infrared spectroscopy (FTIR). Fitting findings showed that the mechanism of adsorption of Cr(VI) on PPY-PANI@RHA was a multi-ionic mechanism, where one binding site may be occupied by one and two ions. It may also be noticed that the temperature augmentation generated the activation of more functional groups of the composite adsorbent, facilitating the interactions of metal ions with the binding sites and the access to smaller pore. The energetic characterization suggested that the mechanism of adsorption of the investigated systems was exothermic and Cr(VI) ions were physisorbed on PPY-PANI@RHA surface via electrostatic interaction, reduction of Cr(VI) to Cr(III), hydrogen bonding, and ion exchange. Overall, the utilization of the theory of statistical physics provided fruitful and profounder analysis of the adsorption mechanism. The estimation of the pore size distribution (PSD) of the polypyrrole-polyaniline@rice husk ash using the statistical physics approach was considered stereographic characterization of the adsorbent (here PPY-PANI@RHA was globally a meso-porous adsorbent). Lastly, the mechanism of Cr(VI) removal from wastewater using PPY-PANI@RHA as adsorbent was macroscopically investigated via the estimation of three thermodynamic functions.

13.
J Environ Manage ; 370: 122587, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305880

RESUMO

The corrosion-induced permeability changes of nanoscale zero-valent iron (NZVI) are one of the crucial factors constraining the successful application of NZVI in the remediation of contaminated groundwater. It is of great significance to study the dynamic evolution of corrosion products of NZVI after NZVI is injected into porous media and its influence on pore plugging effect from the pore scale. Micro computed tomography (Micro-CT) imaging technology, mineralogical characterization and theoretical calculations were used to understand the details of NZVI corrosion plugging porous media at the pore scale. This study reveals the factors of NZVI corrosion plugging porous media, namely, gas production (H2) in the early and middle stages of corrosion (before 90 days) and solid phase changes (NZVI volume increase and migration) in the later stages (after 90 days). The permeability loss rate of the porous media was 66.8%, 87.3%, 79.4%, and 53.6% at the corrosion times of 30, 60, 90, and 120 days, respectively. After 90 d of corrosion, the particle size of NZVI increases by 7.9%, and the secondary minerals formed by corrosion are mainly Fe3O4/γ-Fe2O3 and FeOOH. In addition, this study also found that the migration of NZVI after 90 d was due to its corrosion reducing the magnetic attraction between particles, dissociating into smaller particles or agglomerates under the action of fluid dynamics, resulting in its redistribution in the porous medium and causing blockage. This study clarifies that NZVI corrosion plays a vital influence in affecting the permeability and clogging of porous media, providing valuable guidance for optimizing NZVI-based remediation technologies.

14.
Water Environ Res ; 96(9): e11126, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39286867

RESUMO

This work presents the results of an investigation on the physiochemical and structural characteristics of polyacrylonitrile (PAN) nanofiltration (NF) membranes prepared using a novel concept of binary solvents for nickel (Ni) removal from wastewater streams. The thermodynamic and kinetic aspects are emphasized aiming to optimize dope formulation, membrane performance, and durability. The fabricated membranes were characterized by scanning electron microscopy (SEM), porosimetry, tensile stress/strain, and flux and rejection. Results revealed that the use of an equal (1:1) mixture of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as dope solvents led to the formation of membranes with enhanced performance, offering pure water flux of 2.33 L·m-2·h-1·bar-1 and Ni rejection of 90.84%. Moreover, the incorporation of 0.5 wt.% PEG as a pore-forming agent to the dope solution further boosted pure water flux to 4.97 L·m-2·h-1·bar-1 with negligible impact on Ni rejection. Besides attractive performance, the adopted strategy offered membranes of exceptionally high flexibility with no sign of defect or failure especially during module fabrication and testing enabling smooth and hassle-free scale-up and extension to other applications. PRACTITIONER POINTS: Optimized solvent mixture: A 1:1 blend of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as solvents resulted in enhanced membrane performance. High flux and Ni rejection: The fabricated membranes exhibited a pure water flux of 2.33 L·m-2·h-1·bar-1 and a remarkable Ni rejection of 90.84%. PEG enhancement: Incorporating 0.5 wt.% PEG as a pore-forming agent further improved the membrane's pure water flux to 4.97 L·m-2·h-1·bar-1, without compromising Ni rejection. Exceptional flexibility: The adopted strategy yielded membranes with exceptional flexibility, making them suitable for scale-ups and other applications.


Assuntos
Resinas Acrílicas , Membranas Artificiais , Níquel , Solventes , Águas Residuárias , Poluentes Químicos da Água , Níquel/química , Resinas Acrílicas/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Solventes/química , Purificação da Água/métodos , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos
15.
Adv Mater ; 36(41): e2408042, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39148164

RESUMO

Isoreticular chemistry, which enables property optimization by changing compositions without changing topology, is a powerful synthetic strategy. One of the biggest challenges facing isoreticular chemistry is to extend it to ligands with strongly coordinating substituent groups such as unbound -COOH, because competitive interactions between such groups and metal ions can derail isoreticular chemistry. It is even more challenging to have an isoreticular series of carboxyl-functionalized MOFs capable of encompassing chemically disparate metal ions. Here, with the simultaneous introduction of carboxyl functionalization and pore space partition, a family of carboxyl-functionalized materials is developed in diverse compositions from homometallic Cr3+ and Ni2+ to heterometallic Co2+/V3+, Ni2+/V3+, Co2+/In3+, Co2+/Ni2+. Cr-MOFs remain highly crystalline in boiling water. Unprecedentedly, one Cr-MOF can withstand the treatment cycle with 10m NaOH and 12m HCl, allowing reversible inter-conversion between unbound -COOH acid form and -COO- base form. These materials exhibit excellent sorption properties such as high uptake capacity for CO2 (100.2 cm3 g-1) and hydrocarbon gases (e.g., 142.1 cm3 g-1 for C2H2, 110.5 cm3 g-1 for C2H4) at 1 bar and 298K, high benzene/cyclohexane selectivity (up to ≈40), and promising separation performance for gas mixtures such as C2H2/CO2 and C2H2/C2H4.

16.
Biomed Mater ; 19(6)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208855

RESUMO

Artificial bone is the alternative candidate for the bone defect treatment under the circumstance that there exits enormous challenge to remedy the bone defect caused by attributes like trauma and tumors. However, the impact of pore size discrepancy for regulating new bone generation is still ambiguous. Using direct 3D printing technology, customized 3D polycaprolactone/ß-tricalcium phosphate (PCL/ß-TCP) artificial bones with different structural pore sizes (1.8, 2.0, 2.3, 2.5, and 2.8 mm) were successfully prepared, abbreviated as the 3D PCL/ß-TCP. 3D PCL/ß-TCP exhibited a 3D porous structure morphology similar to natural bone and possessed outstanding mechanical properties. Computational fluid dynamics analysis indicated that as the structural pore size increased from 1.8 to 2.8 mm, both velocity difference (from 4.64 × 10-5to 7.23 × 10-6m s-1) and depressurization (from 7.17 × 10-2to 2.25 × 10-2Pa) decreased as the medium passed through.In vitrobiomimetic mineralization experiments confirmed that 3D PCL/ß-TCP artificial bones could induce calcium-phosphate complex generation within 4 weeks. Moreover, CCK-8 and Calcein AM live cell staining experiments demonstrated that 3D PCL/ß-TCP artificial bones with different structural pore sizes exhibited advantageous cell compatibility, promoting MC3T3-E1 cell proliferation and adhesion.In vivoexperiments in rats further indicated that 3D PCL/ß-TCP artificial bones with different structural pore sizes promoted new bone formation, with the 2.5 mm group showing the most significant effect. In conclusion, 3D PCL/ß-TCP artificial bone with different structural pore sizes could promote new bone formation and 2.5 mm group was the recommended for the bone defect repair.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Teste de Materiais , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Fosfatos de Cálcio/química , Poliésteres/química , Animais , Porosidade , Substitutos Ósseos/química , Ratos , Alicerces Teciduais/química , Camundongos , Osso e Ossos/metabolismo , Materiais Biocompatíveis/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Osteoblastos/citologia , Ratos Sprague-Dawley , Masculino , Proliferação de Células/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos
17.
Sci Total Environ ; 951: 175564, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163937

RESUMO

Differences in the spontaneous combustion mechanism characteristics of Coal-Oil Symbiosis (COS) significantly affect coal mines' safety management and ecological environment maintenance. Accordingly, this study aims to investigate COS's macroscopic and microstructural characteristics with different oil mass percentage using simultaneous thermal analysis, low-temperature N2 adsorption, scanning electron microscopy (SEM), and in-situ Fourier transform infrared spectroscopy (FTIR). The results showed that with the increase of oil mass percentage, the COS displayed the weakening of oxygen absorption and the advance of some characteristic temperatures, and 11.5 °C advanced the maximum weight loss temperature on average. For the 25 % oil sample, the ignition temperature was 9.5 °C lower than that of the raw coal. Additionally, the apparent activation energy of the high oil mass percentage sample was significantly reduced in the pyrolysis and combustion stages, and when the oil mass percentage was 25 %, the activation energies of the two stages decreased by 89 % and 60.65 %, respectively. Compared to raw coal, COS exhibits fewer macropores and surface pores covered by oil, which limits oxygen adsorption. Moreover, COS with higher oil mass percentage had an increase in hydroxyl and aliphatic hydrocarbon groups, and the CH3 + CH2 content of COS increased by 69.2 % on average, providing more active groups, thereby promoting spontaneous combustion. This study provides an important reference and theoretical support for further understanding the structural evolution and oxidation kinetic behavior of COS, contributing to disaster prevention and ecological environmental protection in coal-oil coexistence mining areas.

18.
J Environ Radioact ; 279: 107525, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213736

RESUMO

Determining the transmission rate of radon gas in overburden strata is crucial for conducting a comprehensive study of radon gas's longitudinal and long-distance migration mechanisms. This study investigates the mineral components of rocks in the underground strata of the mining area using the X-ray diffraction method. Additionally, it examines the pore structure parameters of the rocks at different depths using the low-temperature nitrogen adsorption method. This research introduces an approach to inversion calculate the radon gas transmission rate through the activity ratio of radon's characteristic daughters based on the decay law and activity balance of 210Po and 210Pb daughters. In addition, it determines the transmission rates of radon gas in overlying strata at various depths through this method. The relationship between the rock's mineral composition and pore structure is investigated, and the effects of pore structure and mineral composition on the radon gas transmission rate are analyzed. The findings indicated that the pore structure exerts a dual impact on radon gas transport: macropores serve as channels for upward radon gas transport, while micropores offer most of the adsorption area. In contrast, the radon gas transmission rate is indirectly influenced by the mineral composition content associated with the medium's adsorption capacity and pore structure. In the studied lithologies, an increase in quartz content promotes radon gas transmission, while an increase in clay mineral content impedes it. Finally, the mechanisms of radon gas transport, daughter adsorption, and the impacts of rock pore structure and mineral composition on the radon transmission rate are discussed.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Produtos de Decaimento de Radônio , Radônio , Radônio/análise , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Produtos de Decaimento de Radônio/análise , Mineração , Poluentes Radioativos do Solo/análise
19.
J Chromatogr A ; 1733: 465232, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178660

RESUMO

The role of the average pore diameter (APD) of 1.7µm AtlantisTM Premier BEHTM Particles derivatized with a zwitterionic group (propylsulfobetaine) on the efficiency of their 2.1 × 50 mm hydrophilic interaction liquid chromatography (HILIC) packed columns is investigated experimentally. Van Deemter plots for toluene (neutral, hydrophobic), cytosine (neutral, polar), tosylate (negatively charged), bretylium and atenolol (positively charged) were measured on three HILIC columns packed with BEH Z-HILIC Particles having APDs of 95 Å, 130 Å, and 300 Å. The intraparticle diffusivities of the analytes across these three BEH Z-HILIC Particles were measured by the peak parking method. The experimental data reveal that the slope of the C-branch of the van Deemter plots can be reduced by factors of about 15 for toluene, 2.5 for cytosine, 6 for atenolol, 5 for tosylate, and 14 for bretylium with increasing the APD from 95 Å to 300 Å. This observation is explained by: (1) the reduced amount of the highly viscous water diffuse layer and subsequent increase of the amount of acetonitrile-rich eluent in the mesopores, (2) the localized electrostatic adsorption of the retained analytes onto the zwitterion-bonded BEH Particles, and (3) depletion/excess of the analytes into the water diffuse layer. A general model of intraparticle diffusivity was then proposed to account for the impact of the APD of Z-HILIC Particles on the solid-to-liquid mass transfer resistance of small molecules. The model highlights the relevance of the thickness of the water diffuse layer, the access of the bulk eluent into the mesopore, the localized electrostatic adsorption, and the partitioning constant of the retained analyte between the bulk eluent and the water diffuse layer.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Cromatografia Líquida/métodos , Porosidade , Betaína/química , Betaína/análogos & derivados , Difusão , Tolueno/química , Atenolol/química , Atenolol/análise
20.
Heliyon ; 10(15): e34989, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145032

RESUMO

Multi cycle injection and production of underground gas storage (UGS) promote continuous changes in reservoir characteristics, to clarify the impact of different injection and production characteristics on the reservoir, taking carbonate rock fracture-pore type gas storage reservoirs as the research object, established a set of experimental methods based on production characteristics, quantitative analysis of reservoir damage caused by particle migration caused by increasing, decreasing, fluctuating, and reverse changes in production pressure difference. And the following research results are obtained. First, established experimental methods based on production characteristics, the production method includes increasing, decreasing, fluctuating, and reverse changes, realized experimental evaluation of simulating actual production full features. Second, there is a critical pressure difference in the migration of reservoir particles, the fluctuation of production pressure difference induce further migration of particles, resulting in natural unblocking or new blockage. Third, the change in the direction of production pressure difference can cause large particle sizes break into small particle sizes and migrate out of the pore throat, thus the permeability of the reservoir can be improved to a certain extent. It is concluded that controlling a certain production pressure difference during the injection and production process of UGS, not only meets production needs, but also alleviate the damage of injection production to reservoir permeability to a certain extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA