RESUMO
Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.
Assuntos
Antioxidantes , Peróxido de Hidrogênio , Estresse Oxidativo , Polidesoxirribonucleotídeos , Proteômica , Espermatozoides , Animais , Camundongos , Peróxido de Hidrogênio/toxicidade , Proteômica/métodos , Masculino , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Células RAW 264.7 , Polidesoxirribonucleotídeos/farmacologia , Stichopus/química , Pepinos-do-Mar/química , Substâncias Protetoras/farmacologiaRESUMO
The polymeric nanoparticles (PNPs) loaded with prednisolone were developed to exhibit pH-responsive properties owing to the attachment of a hydrazone linkage between the copolymer chitosan and mPEG. In the diseased cellular environment, the hydrazone bond tends to break due to reduced pH, leading to the release of the drug from the PNPs at the required site of action. The fabricated PNPs exhibit spherical morphology, optimum size (â¼200 nm), negative surface charge, and monodispersed particle size distribution. The encapsulation efficiency of the PNPs was determined to be 71.1 ± 0.79 % and two experiments (polymer weight loss and drug release) confirmed the pH-responsive properties of the PNPs. The cellular study cytotoxicity assay showed biocompatibility of PNPs and drug molecule-mediated toxicity to A549 cells. The ligand atrial natriuretic peptide-attached PNPs internalized into A549 cells via natriuretic peptide receptor-A to achieve target specificity. The PNPs cytotoxicity and pH-response medicated inflammation reduction functionality was studied in inflammation-induced RAW264.7 cell lines. The study observed the PNPs effectively reduced the inflammatory mediators NO and ROS levels in RAW264.7. The results showed that pH-responsive properties of PNPs and this novel fabricated delivery system effectively treat inflammatory and cancer diseases.
Assuntos
Quitosana , Química Click , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Concentração de Íons de Hidrogênio , Humanos , Camundongos , Animais , Nanopartículas/química , Células RAW 264.7 , Células A549 , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Polímeros/química , Polímeros/síntese química , Polímeros/farmacologia , Liberação Controlada de Fármacos , Prednisolona/química , Prednisolona/farmacologia , Sobrevivência Celular/efeitos dos fármacosRESUMO
The Xuanfei Baidu (XFBD) prescription, a traditional Chinese medicine prescription, has demonstrated significant anti-inflammatory activities; however, the number of its reported constituents is limited, and its anti-inflammatory constituents are unclear. In this study, the constituents of XFBD granule, a granule dosage of XFBD prescription, were thoroughly examined in vitro and in vivo using liquid chromatography-quadruple-time-of-flight-mass spectrometry, and the anti-inflammatory constituents were screened. A total of 214 constituents were identified from the XFBD granule, 62 of which were confirmed via comparison with reference standards. After intragastric administration of XFBD granule, 63 and 28 constituents were absorbed into the rat sera and lungs in prototype form, respectively. XFBD granule and XFBD-containing serum were found to significantly reduce nitric oxide (NO) and interleukin-6 (IL-6) secretion in lipopolysaccharide-induced RAW264.7 cells. Five anti-inflammatory constituents (verbasoside, scutellarin, luteolin, apigenin, and pogostone) were found to reduce the concentration of NO and IL-6 in a dose-dependent manner. Moreover, the combination of these five constituents could significantly reduce NO secretion even when the concentration of each constituent was two to three orders of magnitude lower than their individual minimum effective concentrations. Overall, this study provides a valuable reference for the discovery of effective constituents from the XFBD granule.
Assuntos
Anti-Inflamatórios , Medicamentos de Ervas Chinesas , Lipopolissacarídeos , Animais , Camundongos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ratos , Cromatografia Líquida/métodos , Masculino , Óxido Nítrico/metabolismo , Espectrometria de Massas/métodos , Ratos Sprague-Dawley , Interleucina-6/sangueRESUMO
Porcine intestinal mucosal proteins are novel animal proteins that contain large amounts of free amino acids and peptides. Although porcine intestinal mucosal proteins are widely used in animal nutrition, the peptide bioactivities of their enzymatic products are not yet fully understood. In the present study, we investigated the effect of porcine intestinal mucosal peptides (PIMP) on the RAW264.7 cell model of LPS-induced inflammation. The mRNA expression of inflammatory factors (interleukin 6, tumor necrosis factor-α, and interleukin-1ß) and nitrous oxide levels were all measured by quantitative real-time PCR and cyclooxygenase-2 protein expression measured by Western blot. To investigate the modulating effect of PIMP and to establish a model of dextran sodium sulfate (DSS)-induced colitis in mice, we examined the effects of hematoxylin-eosin staining, myeloperoxidase levels, pro-inflammatory factor mRNA content, tight junction protein expression, and changes in intestinal flora. Nuclear factor κB pathway protein levels were also assessed by Western blot. PIMP has been shown in vitro to control inflammatory responses and prevent the activation of key associated signaling pathways. PIMP at doses of 100 and 400 mg/kg/day also alleviated intestinal inflammatory responses, reduced tissue damage caused by DSS, and improved intestinal barrier function. In addition, PIMP at 400 mg/kg/day successfully repaired the dysregulated gut microbiota and increased short-chain fatty acid levels. These findings suggest that PIMP may positively influence inflammatory responses and alleviate colitis. This study is the first to demonstrate the potential of PIMP as a functional food for the prevention and treatment of colitis.
RESUMO
Atopic dermatitis is a chronic skin disease that affects millions of people all over the world. The objective of this study was to evaluate the inhibitory effects of the roots of Glycyrrhiza uralensis (GU) and Donkey Hide Gelatin (DHG) water extracts on DNCB-induced NC/Nga mice and TNF-α/IFN-γ treated keratinocytes or LPS-stimulated macrophages. The combined treatment using the water extracts of GU and DHG improved the skin symptom evaluation score and skin histology, with increased expression of the skin barrier proteins Claudin 1 and Sirt 1 in lesion areas. The IFN-γ activity was promoted in PBMCs, ALN, and dorsal skin tissue, while the absolute cell number was reduced for T cells so that the production and expression of serum IgE and cytokines were suppressed. In TNF-α/IFN-γ induced HaCaT cells, IL-6, IL-8, MDC, and RANTES were all inhibited by GU and DHG water extracts, while ICAM-1 and COX-2 levels were similarly downregulated. In addition, GU and DHG water extracts decreased LPS-mediated nitric oxide, IL-6, TNF-α, and PGE2 in RAW 264.7 cells, and the expression of iNOS and COX-2 also decreased. Notably, the DHG:GU ratio of 4:1 was shown to have the best effects of all ratios. In conclusion, GU and DHG have anti-skin inflammatory potentials that can be used as alternative ingredients in the formula of functional foods for people with atopic dermatitis.
Assuntos
Dermatite Atópica , Glycyrrhiza uralensis , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno , Gelatina , Ciclo-Oxigenase 2 , Interleucina-6 , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Alimento FuncionalRESUMO
AIM: 6S-5-methyltetrahydrofolate is the predominant form of dietary folate in circulation and is used as a crystalline form of calcium salt (MTHF-Ca). Reports revealed that MTHF-Ca was more safe than folic acid, a synthetic and highly stable version of folate. Folic acid has been reported to have anti-inflammatory effects. The study's objective was to assess the anti-inflammatory effect of MTHF-Ca in vitro and in vivo. MAIN METHODS: In vitro, the ROS production was assessed by H2DCFDA, and nuclear translocation of NF-κB were evaluated by the NF-κB nuclear translocation assay kit. Interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) were assessed using ELISA. In vivo, ROS production was assessed by H2DCFDA, neutrophils and macrophages recruitment were evaluated in tail transection-induced and CuSO4-induced zebrafish inflammation models. Expression of inflammation related genes were also investigated based on CuSO4-induced zebrafish inflammation model. KEY FINDINGS: MTHF-Ca treatment decreased LPS-induced ROS production, inhibited nuclear translocation of NF-κB and decreased the levels of IL-6, IL-1ß and TNF-α in RAW264.7 cells. In addition, MTHF-Ca treatment inhibited ROS production, suppressed the recruitment of neutrophils and macrophages, and reduced the expression of inflammation related genes, including jnk, erk, nf-κb, myd88, p65, tnf-α, and il-1b in zebrafish larvae. SIGNIFICANCE: MTHF-Ca may play an anti-inflammatory role by reducing the recruitment of neutrophils and macrophages and keeping the low levels of proinflammatory mediators and cytokines. MTHF-Ca may have a potential role in the treatment of inflammatory diseases.
Assuntos
NF-kappa B , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , NF-kappa B/metabolismo , Cálcio , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Células RAW 264.7 , Cálcio da Dieta , Ácido Fólico , Lipopolissacarídeos/farmacologiaRESUMO
The major labdanes in the oleogum resin of Araucaria heterophylla (Salisb.) Franco, 13-epi-cupressic acid (1) and acetyl-13-epi-cupressic acid (2) were used to prepare seven new (3-9), along with one known (10) derivatives. RAW264.7 cells were used to evaluate the anti-inflammatory activity of the derivatives (1-10) via measuring the level of COX-2 expression and IL-6. Pre-treated RAW264.7 cells with 1-10 (except for derivative 7) at 25 µM for 24h exhibited downregulation of COX-2 expression in response to LPS stimulation. Moreover, pre-treatment with compounds 1, 2, or 3 significantly attenuated the LPS-stimulated IL-6 level in RAW264.7 cells (p < 0.05). A docking study was conducted against phospholipase A2 (PLA2), a crucial enzyme in initiating the inflammatory cascade. The significant structural features of compounds (1-10) as PLA2 inhibitors included the carbonyl group at C-4 (free or substituted) and the hydrophobic diterpenoid skeleton. This study suggested 13-epi-cupressic acid as a scaffold for new anti-inflammatory agents.
Assuntos
Interleucina-6 , Lipopolissacarídeos , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Fosfolipases A2RESUMO
Probiotics are alive microbes that present beneficial to the human's health. They influence immune responses through stimulating antibody production, activating T cells, and altering cytokine expression. The probiotic characteristics of Levilactobacillus brevis KU15159 were evaluated on the tolerance and adherence to gastrointestinal conditions. L. brevis KU15159 was safe in a view of producing various useful enzymes and antibiotic sensitivity. Heat-treated L. brevis KU15159 increased production of nitric oxide (NO) and phagocytic activity in RAW 264.7 cells. In addition, heat-treated L. brevis KU15159 upregulated the expression of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, at protein as well as mRNA levels. In addition, the mitogen-activated protein kinase (MAPK) pathway, which regulates the immune system, was activated by heat-treated L. brevis KU15159. Therefore, L. brevis KU15159 exhibited an immune-enhancing effect by the MAPK pathway in macrophage.
Assuntos
Levilactobacillus brevis , Animais , Camundongos , Humanos , Células RAW 264.7 , Temperatura Alta , Citocinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Necrose Tumoral alfa , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Lipopolissacarídeos , NF-kappa B/metabolismoRESUMO
Macrophages have important roles in the progression of inflammation. Ajania purpurea Shih. is a member of the Ajania Poljakor family that grows in Tibet (China). Extracts from plants in this genus have anti-bacterial and anti-inflammatory properties. However, there are few reports on the activity and mechanism of Ajania purpurea. Here, we confirmed the anti-inflammatory effect of Ajania purpurea Shih. ethanol extract (EAPS) by examining the levels of inflammatory factors in a mouse model of peritonitis and RAW264.7 cells. The main components of EAPS detected by LC-MS analysis included piperine and chlorogenic acid. In particular, in lipopolysaccharide (LPS)-induced RAW264.7 cells, EAPS inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW264.7 cells, lowered the levels of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the release of inflammatory factors such as tumor necrosis factor-alpha (TNF-α) and pro-inflammatory cytokines such as interleukin (IL)-1ß and IL-6. In addition, Western blot analysis and immunofluorescence staining verified that EAPS inhibited the activity of the nuclear factor-kappaB (NF-κB) pathway by reducing the nuclear translocation of the p65 subunit. Furthermore, in a mouse model of peritonitis, EAPS inhibited the release of inflammatory factors, as well as the recruitment of immune cells including neutrophils and macrophages. These findings indicated that EAPS suppressed LPS-induced inflammation via inhibiting the NF-κB pathway in RAW264.7 cells and mice with peritonitis. Thus, EAPS may be a viable therapeutic method for the treatment of inflammation and related disorders.
Assuntos
Lipopolissacarídeos , Peritonite , Camundongos , Animais , NF-kappa B , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Dinoprostona , Modelos Animais de Doenças , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Inflammation is a host defense response to harmful agents, such as pathogenic invasion, and is necessary for health. Excessive inflammation may result in the development of inflammatory disorders. Levilactobacillus brevis KU15151 has been reported to exhibit probiotic characteristics and antioxidant activities, but the effect of this strain on inflammatory responses has not been determined. The present study aimed to investigate the anti-inflammatory potential of L. brevis KU15151 in Staphylococcus aureus lipoteichoic acid (aLTA)-induced RAW264.7 macrophages. Treatment with L. brevis KU15151 reduced the production of nitric oxide and prostaglandin E2 by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the production of proinflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß, decreased after treatment with L. brevis KU15151 in aLTA-stimulated RAW 264.7 cells. Furthermore, this strain alleviated the activation of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Moreover, the generation of reactive oxygen species was downregulated by treatment with L. brevis KU15151. These results demonstrate that L. brevis KU15151 possesses an inhibitory effect against aLTA-mediated inflammation and may be employed as a functional probiotic for preventing inflammatory disorders.
Assuntos
Lipopolissacarídeos , Staphylococcus aureus , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Lactobacillus , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Ácidos TeicoicosRESUMO
Moxifloxacin (MOX) is an important antibiotic commonly used in the treatment of recurrent Escherichia coli (E. coli) infections. The aim of this study was to investigate its antibacterial efficiency when used with solid lipid nanoparticles (SNLs) and nanostructured lipid carriers (NLCs) as delivery vehicles. For this purpose we designed two SLNs (SLN1 and SLN2) and two NLCs (NLC1 and NLC2) of different characteristics (particle size, size distribution, zeta potential, and encapsulation efficiency) and loaded them with MOX to determine its release, antibacterial activity against E. coli, and their cytotoxicity to the RAW 264.7 monocyte/macrophage-like cell line in vitro. With bacterial uptake of 57.29 %, SLN1 turned out to be significantly more effective than MOX given as standard solution, whereas SLN2, NLC1, and NLC2 formulations with respective bacterial uptakes of 50.74 %, 39.26 %, and 32.79 %, showed similar activity to standard MOX. Cytotoxicity testing did not reveal significant toxicity of nanoparticles, whether MOX-free or MOX-loaded, against RAW 264.7 cells. Our findings may show the way for a development of effective lipid carriers that reduce side effects and increase antibacterial treatment efficacy in view of the growing antibiotic resistance.
Assuntos
Antineoplásicos , Nanopartículas , Moxifloxacina/farmacologia , Escherichia coli , Portadores de Fármacos , Nanopartículas/toxicidade , Antibacterianos/toxicidade , LipídeosRESUMO
Antarctic krill oil is an emerging marine lipid and expected to be a potential functional food due to its diverse nutrients, such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), phospholipids, astaxanthin and tocopherols. Although krill oil has been previously proved to have anti-inflammatory activity, there is little information about the relationship between its chemical compositions and anti-inflammatory activity. In this study, the RAW264.7 macrophages model was used to elucidate and compare the anti-inflammatory potential of different krill lipid fractions: KLF-A, KLF-H and KLF-E, which have increasing phospholipids, EPA and DHA contents but decreasing astaxanthin and tocopherols levels. Results showed that all the krill lipid fractions alleviated the inflammatory reaction by inhibition of production of nitric oxide (NO), release of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 and gene expression of proinflammatory mediators including TNF-α, IL-1ß, IL-6, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). In addition, KLF-E with the highest phospholipids, EPA and DHA contents showed the strongest inhibition effect on the LPS-induced proinflammatory mediator release and their gene expressions. The results would be helpful to provide powerful insights into the underlying anti-inflammatory mechanism of krill lipid and guiding the production of krill oil products with tailor-made anti-inflammatory activity.
RESUMO
Oleanolic acid (OA), asiatic acid (AA), and maslinic acid (MA) are ubiquitous isomeric triterpene phytochemicals with many pharmacological effects. To improve their application value, we used lipopolysaccharide (LPS) to induce RAW264.7 cells and studied the differences in the anti-inflammatory effects of the triterpenes according to their structural differences. MTT, Griess, and immunofluorescence assays, ELISA, flow cytometry, and Western blotting, were performed. The release of LPS-induced pro-inflammatory mediators, such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), and interleukin (IL-6), was significantly inhibited by OA, AA, and MA at the same concentration, and AA and MA promoted the production of anti-inflammatory factor IL-10. OA, AA, and MA inhibited LPS-induced NF-κB nuclear translocation in RAW264.7 cells. OA and AA inhibited the phosphorylation of ERK1/2, P38, and JNK1/2 in LPS-stimulated RAW264.7 cells. Moreover, OA increased LPS-induced Nrf2 expression and decreased Keap1 expression in RAW264.7 cells. OA, AA, and MA inhibited LPS-stimulated intracellular reactive oxygen species (ROS) production and alleviated mitochondrial membrane potential depletion. Overall, our data suggested that OA, AA, and MA exhibited significant anti-inflammatory effects in vitro. In particular, OA and AA take effects through the MAPKs, NF-κB, and Nrf2 signaling pathways.
Assuntos
Anti-Inflamatórios/farmacologia , Hippophae/química , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de SinaisRESUMO
Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1ß, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.
Assuntos
Anti-Inflamatórios/farmacologia , Otopatias/tratamento farmacológico , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7RESUMO
Inflammation is related to various life-threatening diseases including cancer, neurodegenerative diseases, and metabolic syndrome. Because macrophages are prominent inflammatory cells, regulation of macrophage activation is a key issue to control the onset of inflammation-associated diseases. In this study, we aimed to evaluate the potential anti-inflammatory activity of Citrus unshiu leaf extract (CLE) and to elucidate the mechanism underlying its anti-inflammatory effect. We found the inhibitory activity of CLE on the secretion of proinflammatory cytokines and a chemokine from mouse macrophage-like RAW 264.7 cells and mouse peritoneal macrophages. The inhibitory activity of CLE was attributed to downregulated JNK, p38 MAPK, and NF-κB signaling pathways, leading to suppressed gene expression of inflammation-associated proteins. Oral administration of CLE significantly decreased the serum level of proinflammatory cytokines IL-6 and TNFα and increased that of anti-inflammatory cytokine IL-10 in lipopolysaccharide-induced systemic inflammation mice. In addition, oral administration of CLE decreased secretion and gene expression of several proinflammatory proteins in the liver and spleen of the model mice. Overall results revealed that C. unshiu leaf is effective to attenuate inflammatory responses in vitro and in vivo.
RESUMO
Brucella, a notorious intracellular pathogen, causes chronic infections in many mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane; protein substrates translocated by Brucella include ABC transporters, oxidoreductases, and cell envelope biosynthesis proteins. Previously, we showed that a Tat mutant of Brucella melitensis M28 exhibits reduced survival within murine macrophages. In this study, we compared the host responses elicited by wild-type M28 and its Tat-mutant strains ex vivo. We utilized label-free quantitative proteomics to assess proteomic changes in RAW264.7 macrophages after infection with M28 and its Tat mutants. A total of 6085 macrophage proteins were identified with high confidence, and 79, 50, and 99 proteins were differentially produced upon infection with the Tat mutant at 4, 24, and 48 hpi, respectively, relative to the wild-type infection. Gene ontology and KEGG enrichment analysis indicated that immune response-related proteins were enriched among the upregulated proteins. Compared to the wild-type M28 infection, the most upregulated proteins upon Tat-mutant infection included the cytosolic nucleic acid signaling pathway-related proteins IFIH1, DHX58, IFI202, IFI204, and ISG15 and the NF-κB signaling pathway-related proteins PTGS2, CD40, and TRAF1, suggesting that the host increases the production of these proteins in response to Tat mutant infection. Upregulation of some proteins was further verified by a parallel reaction monitoring (PRM) assay. ELISA and qRT-PCR assays indicated that Tat mutant infection significantly induced proinflammatory cytokine (TNF-α and IL-6) and nitric oxide (NO) production. Finally, we showed that the Tat mutant displays higher sensitivity to nitrosative stress than the wild type and that treatment with the NO synthase inhibitor L-NMMA significantly increases the intracellular survival of the Tat mutant, indicating that NO production contributes to restricting Tat mutant survival within macrophages. Collectively, this work improves our understanding of host immune responses to Tat mutants and provides insights into the mechanisms underlying the attenuated virulence of Tat mutants.
Assuntos
Brucella melitensis , Brucelose , Animais , Arginina , Humanos , Macrófagos , Camundongos , ProteômicaRESUMO
BACKGROUND: Artificial joint replacement surgery is often accompanied by osteolysis induced aseptic loosening around the prosthesis. Wear particles from joint replacement are thought to be one of the main factors leading to local inflammation and osteolysis at the prosthesis site. The aim of this study was to investigate the molecular mechanism of osteoclast formation and dissolution induced by wear particles and the potential roles of Netrin-1, the ERK1/2 pathway and autophagy activation in this process. METHODS: The messenger RNA levels in cells and tissues were detected with real-time quantitative PCR. The western blotting was used to detect the expression of proteins. A CCK-8 kit was used to detect the viability of RAW 264.7 cells. Moreover, an air pouch model of bone resorption was established. Immunohistochemistry was used to detect the expression of TRAP and Netrin-1 in rat bone tissue. Cell culture supernatants were collected in the rat air pouch model of bone resorption, and the levels of RANKL and OPG were detected with enzyme-linked immunosorbent assay. The protein levels of TRAP and Netrin-1 in bone tissue were examined by immunohistochemistry. RESULTS: Titanium wear particles induced osteoclast formation and autophagy activation. Moreover, blocking autophagy suppressed the osteoclastogenesis after exposure to wear particles in vitro. The activation of the ERK1/2 pathway and the overexpression of Netrin-1 were both found to play important roles in osteoclastogenesis mediated by autophagy. Moreover, 3-MA effectively decreased the secretion of proinflammatory cytokines mediated by wear particles. CONCLUSION: Blockade of autophagy inhibits the osteoclastogenesis and inflammation induced by wear particles, thus potentially providing novel treatment strategies for abnormal osteoclastogenesis and aseptic prosthesis loosening induced by wear particles.
Assuntos
Autofagia , Sistema de Sinalização das MAP Quinases , Netrina-1/metabolismo , Osteoclastos/patologia , Osteogênese , Titânio/efeitos adversos , Animais , Autofagia/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Fosfatase Ácida Resistente a Tartarato/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sheng-Mai Yin (SMY), a famous traditional Chinese medicine formula, has been commonly used in China for centuries to treat various diseases, such as inflammation-related diseases. However, the anti-inflammatory activity of SMY and its potential mechanisms still have not yet been clearly understood. AIM OF THE STUDY: In this study, we aimed to determine the anti-inflammatory effect of SMY and explore its underlying mechanisms both on RAW 264.7 cells and zebrafish. MATERIALS AND METHODS: The levels of pro-inflammatory cytokines IL-6 and TNF-α secreted by RAW 264.7 cells were measured by ELISA. The protein expressions of IκBα, p-IκBα (Ser32), STAT3 and p-STAT3 (Tyr705) were determined by Western blotting. And the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 macrophage cells was detected by confocal microscopy. Moreover, the in vivo anti-inflammatory effect of SMY and its potential mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), observation of neutrophil migration and quantitative real-time PCR (qRT-PCR) analysis in zebrafish inflammatory models. RESULTS: SMY reduced the release of IL-6 and TNF-α, inhibited the phosphorylation of IκBα and STAT3 as well as the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 cells. Furthermore, the increased survival, decreased infiltration of inflammatory cells and the attenuated migration of neutrophils together suggested the in vivo anti-inflammatory effects of SMY. More importantly, SMY reduced the gene expressions of pro-inflammatory cytokines and suppressed LPS-induced up-regulation of NF-κB, IκBα and STAT3 in zebrafish inflammatory models. CONCLUSION: SMY exerts significant anti-inflammatory effects with a potential mechanism of inhibiting the NF-κB and STAT3 signal pathways. Our findings suggest a scientific rationale of SMY to treat inflammatory diseases in clinic.
Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Sulfato de Cobre , Citocinas/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Current pharmacological therapies for the management of chronic articular diseases are far from being satisfactory, so new strategies need to be investigated. We tested the intra-articular pain relieving properties of a system of molecules from a characterized Centella asiatica extract (14G1862) in a rat model of osteoarthritis induced by monoiodoacetate (MIA). 14G1862 (0.2-2 mg mL-1) was intra-articularly (i.a.) injected 7 days after MIA, behavioural and histological evaluations were performed 14, 30 and 60 days after treatments. Moreover, the effect of 14G1862 on nitrate production and iNOS expression in RAW 264.7 macrophages stimulated with LPS was assessed. In vitro, 14G1862 treatment attenuated LPS-induced NO production and iNOS expression in a comparable manner to celecoxib. In vivo, 14G1862 significantly reduced mechanical allodynia and hyperalgesia, spontaneous pain and motor alterations starting on day 14 up to day 60. The efficacy was higher or comparable to that evoked by triamcinolone acetonide (100 µg i.a.) used as reference drug. Histological evaluation highlighted the improvement of several morphological parameters in MIA + 14G1862-treated animals with particularly benefic effects on joint space and fibrin deposition. In conclusion, i.a. treatment with Centella asiatica is a candidate to be a novel effective approach for osteoarthritis therapy.
Assuntos
Analgésicos/uso terapêutico , Centella/química , Injeções Intra-Articulares/métodos , Dor/tratamento farmacológico , Triterpenos/uso terapêutico , Analgésicos/farmacologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Ácido Iodoacético , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite do Joelho/tratamento farmacológico , Manejo da Dor , Extratos Vegetais , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Triterpenos/farmacologiaRESUMO
In China, Camellia oleifera oil (COO) is not only a common edible oil but also a traditional remedy widely applied to ameliorate a variety of illnesses associated with inflammation, such as mouth ulcers, thrush, eczema, etc. However, there has been a lack of relevant biological research on the anti-inflammatory capacity of COO, and the specific bioactive lipid phytochemicals contributing to the anti-inflammatory effect need further research. In this study, the RAW 264.7 macrophages model was used to investigate the anti-inflammatory capacity of COO. Our data showed that 33-200 µg/mL COO markedly inhibited the lipopolysaccharide lipopolysaccharide (LPS)-stimulated nitric oxide (NO.) secretion via the suppression of Nos2 and Cox-2 expression. The enzyme immunoassay confirmed that COO also exhibited a strong suppressive effect on the expression of proinflammatory cytokines such as Tnf-α and Il-6. To further explore the correlation between the anti-inflammatory effects and the lipid phytochemicals in COO, 10 samples were collected and screened for their chemical compositions. It was interestingly demonstrated that the polyphenol extracts of COO play a vital role in its anti-inflammatory properties. In addition, an oil-in-water (O/W) emulsion-based system was also developed to deliver the liposoluble COO into the cells, and the feasibility of this system was confirmed. Our research confirms the anti-inflammatory potential of COO and highlights that the main functional ingredient is polyphenol extracts. This may provide a scientific basis for the comprehensive utilization and development of COO and related functional foods.