Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Med Phys ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287463

RESUMO

BACKGROUND: Targeted radiotherapies with low-energy ions show interesting possibilities for the selective irradiation of tumor cells, a strategy particularly appropriate for the treatment of disseminated cancer. Two promising examples are boron neutron capture therapy (BNCT) and targeted radionuclide therapy with α $\alpha$ -particle emitters (TAT). The successful clinical translation of these radiotherapies requires the implementation of accurate radiation dosimetry approaches able to take into account the impact on treatments of the biological effectiveness of ions and the heterogeneity in the therapeutic agent distribution inside the tumor cells. To this end, biophysical models can be applied to translate the interactions of radiations with matter into biological endpoints, such as cell survival. PURPOSE: The NanOx model was initially developed for predicting the cell survival fractions resulting from irradiations with the high-energy ion beams encountered in hadrontherapy. We present in this work a new implementation of the model that extends its application to irradiations with low-energy ions, as the ones found in TAT and BNCT. METHODS: The NanOx model was adapted to consider the energy loss of primary ions within the sensitive volume (i.e., the cell nucleus). Additional assumptions were introduced to simplify the practical implementation of the model and reduce computation time. In particular, for low-energy ions the narrow-track approximation allowed to neglect the energy deposited by secondary electrons outside the sensitive volume, increasing significantly the performance of simulations. Calculations were performed to compare the original hadrontherapy implementation of the NanOx model with the present one in terms of the inactivation cross sections of human salivary gland cells as a function of the kinetic energy of incident α $\alpha$ -particles. RESULTS: The predictions of the previous and current versions of NanOx agreed for incident energies higher than 1 MeV/n. For lower energies, the new NanOx implementation predicted a decrease in the inactivation cross sections that depended on the length of the sensitive volume. CONCLUSIONS: We reported in this work an extension of the NanOx biophysical model to consider irradiations with low-energy ions, such as the ones found in TAT and BNCT. The excellent agreement observed at intermediate and high energies between the original hadrontherapy implementation and the present one showed that NanOx offers a consistent, self-integrated framework for describing the biological effects induced by ion irradiations. Future work will focus on the application of the latest version of NanOx to cases closer to the clinical setting.

2.
Curr Oncol ; 31(9): 5617-5629, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39330044

RESUMO

The aim of the present study was to evaluate the safety and efficacy of radionuclide therapy with [177Lu]Lu-DOTA-TATE according to our single center experience at the University of Naples Federico II. For the present analysis, we considered 21 patients with progressive, advanced, well-differentiated G1 and G2 in patients with gastro-entero-pancreatic (GEP) neuroendocrine tumors (NETs) treated with [177Lu]Lu-DOTA-TATE according to the decisions of a multidisciplinary team. All patients underwent four cycles of 7-8 GBq of [177Lu]Lu-DOTA-TATE every 8 weeks. A whole-body scan (WBS) was performed 4, 48, and 168 h after each treatment. The dosimetry towards the organ at risk and target lesions was calculated. For each patient, renal and bone marrow parameters were evaluated before, during, and 3 months after the end of the treatment. Follow-up data were obtained and RECIST criteria were considered as the endpoint. Among 21 patients enrolled (mean age 65 ± 9 years); 17 (81%) were men and the small intestine was the most frequent location of disease (n = 12). A mild albeit significant variation (p < 0.05) in both platelets and white blood cell counts among all time points was observed, despite it disappearing 3 months after the end of the therapy. According to the RECIST criteria, 11 (55%) patients had a partial response to therapy and 8 (40%) had stable disease. Only one (5%) patient had disease progression 4 months after treatment. Our data confirm that [177Lu]Lu-DOTA is safe and effective in controlling the burden disease of G1/G2 GEP-NETs patients.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Octreotida , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/radioterapia , Masculino , Feminino , Idoso , Neoplasias Pancreáticas/radioterapia , Pessoa de Meia-Idade , Octreotida/análogos & derivados , Octreotida/uso terapêutico , Neoplasias Intestinais/radioterapia , Neoplasias Gástricas/radioterapia , Compostos Organometálicos/uso terapêutico , Receptores de Peptídeos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Resultado do Tratamento
4.
Adv Cancer Res ; 164: 311-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39306369

RESUMO

The optimal treatment of metastatic castration-resistant prostate cancer (mCRPC) continues to be challenging, given the multitude of life prolonging treatment options. Radionuclide therapy delivers concentrated doses of radiation via ionizing particles chelated to ligands or antibody-based molecules with specific tumor targets and is approved for patients with treatment resistant mCRPC. Variations of radionuclide therapies within the continuum of prostate cancer treatment are being investigated. Landmark phase III clinical trials of beta-emitting 177Lu-PSMA radionuclide therapy have demonstrated the utility of 177Lu-PSMA in the treatment of mCRPC. Further research into alpha-emitting radionuclide therapy and vectors may provide alternative treatments for patients with treatment resistant mCRPC. As radionuclide therapy treatment options evolve, assessing appropriate patient selection for radionuclide therapy is important and may be facilitated by advances in imaging and blood-based biomarkers. Exploration of other approved life prolonging therapies in combination with radionuclide therapy has shown increasing interest as a potential method of combatting radionuclide therapy resistance. In this chapter, we review various types of radionuclide therapies for mCRPC, patient selection for radionuclide therapy from outcome predictions, ongoing clinical trials of radiopharmaceuticals for treatment of prostate cancer, and the resistance mechanisms and challenges to radionuclide therapy.


Assuntos
Radioisótopos , Humanos , Masculino , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/patologia
5.
J Nucl Med Technol ; 52(3): 272-273, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237338

RESUMO

Neuroendocrine tumors (NETs) may manifest as large masses in the abdominopelvic region that exhibit mobility and shifting, potentially leading to diagnostic uncertainty both before and after treatment. A meticulous analysis of PET/CT scans is advantageous in accurately identifying the precise location of large abdominopelvic masses. Tumor heterogeneity may be present in NETs with large abdominopelvic masses and may be easily identified on dual-tracer (68Ga-DOTATATE and 18F-FDG) PET/CT scans. In this scenario, the combined use of chemotherapy and peptide receptor radionuclide therapy is a more effective treatment option than monotherapy. Here, we present a case of a NET with wandering, large, heterogeneous masses in the abdominopelvic regions that were identified using dual-tracer PET/CT. After the administration of temozolomide chemotherapy in a combined chemotherapy-peptide receptor radionuclide therapy approach, we observed an upregulation in the expression of somatostatin receptor in the abdominopelvic masses.


Assuntos
Fluordesoxiglucose F18 , Tumores Neuroendócrinos , Compostos Organometálicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Somatostatina , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Receptores de Somatostatina/metabolismo , Compostos Organometálicos/uso terapêutico , Metástase Neoplásica , Gradação de Tumores , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Receptores de Peptídeos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-39237746

RESUMO

PURPOSE: Targeted radionuclide therapy (TRT) is a cancer treatment with relative therapeutic efficacy across various cancer types. We studied the therapeutic potential of TRT using fibroblast activation protein-α (FAP) targeting sdAbs (4AH29) labelled with 225Ac or 131I in immunocompetent mice in a human FAP (hFAP) expressing lung cancer mouse model. We further explored the combination of TRT with programmed cell death ligand 1 (PD-L1) immune checkpoint blockade (ICB). METHODS: We studied the biodistribution and tumour uptake of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 by ex vivo γ-counting. Therapeutic efficacy of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 was evaluated in an immunocompetent mouse model. Flow cytometry analysis of tumours from [225Ac]Ac-DOTA-4AH29 treated mice was performed. Treatment with [225Ac]Ac-DOTA-4AH29 was repeated in combination with PD-L1 ICB. RESULTS: The biodistribution showed high tumour uptake of [131I]I-GMIB-4AH29 with 3.5 ± 0.5% IA/g 1 h post-injection (p.i.) decreasing to 0.9 ± 0.1% IA/g after 24 h. Tumour uptake of [225Ac]Ac-DOTA-4AH29 was also relevant with 2.1 ± 0.5% IA/g 1 h p.i. with a less steep decrease to 1.7 ± 0.2% IA/g after 24 h. Survival was significantly improved after treatment with low and high doses [131I]I-GMIB-4AH29 or [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Moreover, we observed significantly higher PD-L1 expression in tumours of mice treated with [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Therefore, we combined high dose [225Ac]Ac-DOTA-4AH29 with PD-L1 ICB showing therapeutic synergy. CONCLUSION: [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit high and persistent tumour targeting, translating into prolonged survival in mice bearing aggressive tumours. Moreover, we demonstrate that the combination of PD-L1 ICB with [225Ac]Ac-DOTA-4AH29 TRT enhances its therapeutic efficacy.

7.
Bioorg Chem ; 153: 107810, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276489

RESUMO

Although antibody-based immune checkpoint blockades have been successfully used in antitumor immunotherapy, the low response rate is currently the main problem. In this work, a small-molecule programmed cell death-ligand (PD-L1) inhibitor, LG-12, was developed and radiolabeled with 131I to obtain the chemically and biologically identical radiopharmaceutical [131I]LG-12, which aimed to improve the antitumor effect by combination of LG-12 and [131I]LG-12. LG-12 showed high inhibitory activity to PD-1/PD-L1 interaction. The results of cell uptake and biodistribution studies indicated that [131I]LG-12 could specifically bind to PD-L1 in B16-F10 tumors. It could induce immunogenic cell death and the release of high mobility group box 1 and calreticulin. The combination of [131I]LG-12 and LG-12 could significantly inhibit tumor growth and resulted in enhanced antitumor immune response. This PD-L1 small-molecule inhibitor based combination strategy has great potential for tumor treatment.

8.
Phys Med Biol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293493

RESUMO

OBJECTIVE: 177Lu-based targeted radionuclide therapy (TRT) has become an important cancer treatment option in recent years, in particular in the treatment of advanced prostate cancer and metastasized neuroendocrine tumors. Although it is known from conventional radiotherapy that the temporal dynamics of the dose-rate can be of relevance for tumor cell survival, the analysis of TRT efficacy usually considers only the absorbed dose. Thus, the aim of this theoretical analysis is to shed light on the possible effects of the pattern of dose-rate in TRT on tumor control probability (TCP). APPROACH: For this purpose, TCP is studied numerically in a typical four-cycle treatment regime based on the mechanistic lethal-potentially lethal model and the Zaider-Minerbo model for TCP including repopulation of tumor cells. MAIN RESULTS: It is shown that the dose-rate pattern in TRT can have a substantial effect on TCP even though the absorbed dose in the tumor lesion is unchanged. These dose-rate effects are particularly evident when repair of potentially lethal lesions is slow. SIGNIFICANCE: The results indicate that in some situations in the analysis of the efficacy of TRT it is necessary to consider the full dose-rate pattern instead of the absorbed dose alone. This can be highly relevant for optimization and further development of TRTs. In particular, it could be of relevancy in studying the efficacy of newly emerging treatment concepts that combine the use of TRT and drugs that inhibit DNA damage repair.

9.
Theranostics ; 14(12): 4701-4712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239524

RESUMO

Erythropoietin-producing hepatocellular receptor A2 (EphA2), is a receptor tyrosine kinase involved in cell-cell interactions. It is known to be overexpressed in various tumors and is associated with poor prognosis. EphA2 has been proposed as a target for theranostic applications. Low molecular weight peptide-based scaffolds with low nanomolar affinities have been shown to be ideal in such applications. Bicyclic peptides have emerged as an alternative to traditional peptides for this purpose, offering affinities comparable to antibodies due to their constrained nature, along with high tissue penetration, and improved stability compared to linear counterparts. This study presents the development and comprehensive in vitro and in vivo preclinical evaluation of BCY18469, a novel EphA2-targeting bicyclic peptide-based radiotheranostic agent. Methods: The EphA2-targeting Bicycle® peptide BCY18469 was identified through phage-display and chemically optimized. BCY18469 was radiolabeled with 68Ga, 177Lu and 111In. The physicochemical properties, binding affinity and internalization as well as specificity of the peptide were evaluated in vitro. In vivo PET/MR and SPECT/CT imaging studies were performed using [68Ga]Ga-BCY18469 and [111In]In-BCY18469, respectively, along with biodistribution of [177Lu]Lu-BCY18469 up to 24 h post injection in HT1080- and PC-3-tumor bearing BALB/c nu/nu EphA2-overexpressing xenograft mouse models. Results: The EphA2-targeting bicyclic peptide BCY18469 showed high binding affinity toward human and mouse EphA2 (1.9 and 3.8 nM, respectively). BCY18469 specifically bound and internalized into EphA2-expressing HT1080 cells. Imaging studies showed high tumor enrichment at early time-points (SUV of 1.7 g/mL at 1 h p.i. and 1.2 g/mL at 2 h p.i. in PET/MRI, HT1080 xenograft) with tumor contrast as early as 5 min p.i. and kidney-mediated clearance. Biodistribution studies revealed high early tumor uptake (19.5 ± 3.5 %ID/g at 1 h p.i., HT1080 xenograft) with SPECT/CT imaging further confirming these findings (5.7 ± 1.5 %ID/g at 1 h p.i., PC-3 xenograft). Conclusion: BCY18469 demonstrated high affinity, specific targeting of EphA2, a favorable biodistribution profile, and clearance through renal pathways. These findings underscore the potentially important role of bicyclic peptides in advancing radiotheranostic approaches and encourage additional translational research.


Assuntos
Receptor EphA2 , Animais , Receptor EphA2/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Distribuição Tecidual , Peptídeos Cíclicos/farmacocinética , Peptídeos Cíclicos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Masculino , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Lutécio/química , Radioisótopos de Índio , Radioisótopos/química , Feminino , Radioisótopos de Gálio , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo
10.
J Neuroendocrinol ; : e13443, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243213

RESUMO

Peptide receptor radionuclide therapy (PRRT) has been primarily studied in low and intermediate-grade digestive neuroendocrine tumors (NET G1-G2). The documentation of a similar benefit for high-grade digestive neuroendocrine neoplasms (NEN) has been limited. This review evaluates the use of PRRT for high-grade digestive NEN (well-differentiated NET G3 and poorly differentiated neuroendocrine carcinomas [NEC]). We identified one phase III trial and seven retrospective studies reporting specifically on PRRT outcome of >10 digestive high-grade NEN patients. The retrospective single-arm studies indicate a benefit for PRRT in NET G3. The randomized phase III NETTER-2 trial demonstrates major PFS superiority of PRRT versus somatostatin analog therapy as the first-line treatment for the NET G3 subgroup. PRRT can now be considered a potential first-line treatment for somatostatin receptor-positive NET G3 patients, but whether it should be the first-line standard of care for all NET G3 patients is still not clarified. For NEC, scarce data are available, and pathologic distinction between NEC and NET G3 can be difficult when Ki-67 is below 55%. PRRT could be considered as a treatment for refractory NEC in very selected cases when there is a high uptake on somatostatin receptor imaging, Ki-67 is below 55%, and there is no rapid tumor progression.

11.
Endokrynol Pol ; 75(4): 412-418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39279310

RESUMO

BACKGROUND: Neuroendocrine tumours (NETs) are a heterogeneous group of tumours, which is characterized by rich vascularization. The role of angiogenesis in NETs has been widely researched. Peptide receptor radionuclide therapy (PRRT) is an effective treatment method for patients with disease progression in NETs. Due to the heterogeneousness of NETs, the response to treatment varies. Currently, the finding of efficient markers helpful in assessing the response to treatment in NETs is crucial. The aim of this study was to assess chromogranin A (CgA) and angiogenic factors in gastro-entero-pancreatic (GEP) and broncho-pulmonary (BP) NET patients treated with PRRT. MATERIAL AND METHODS: The study group included 40 patients with GEP NETs and BP NETs who completed four cycles of PRRT. Serum levels of CgA and angiogenic factors such as vascular endothelial growth factor (VEGF), its receptors (VEGF-R1, VEGF-R2, VEGF-R3), were assessed before and after four cycles of PRRT. All tests were determined using ELISA. RESULTS: The concentration of CgA, VEGF-R1 and VEGF-R2 decreased significantly, whereas VEGF-R3 increased significantly after PRRT. PRRT did not affect VEGF, it was similar before and after the radioisotope treatment. Based on AUROC, only for VEGF-R1 AUC was a consequence of 0.7 which can be considered as a good response to PRRT treatment. CONCLUSIONS: VEGF-R1 may be a potential biomarker useful in assessing the effectiveness of PRRT in NET patients.


Assuntos
Cromogranina A , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Cromogranina A/sangue , Receptores de Peptídeos/metabolismo , Biomarcadores Tumorais/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Neovascularização Patológica/radioterapia , Neovascularização Patológica/sangue , Octreotida/análogos & derivados , Octreotida/uso terapêutico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/sangue , Resultado do Tratamento
12.
Front Oncol ; 14: 1445191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239273

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a type of head and neck cancer that is aggressive, difficult to treat, and often associated with poor prognosis. HNSCC is the sixth most common cancer worldwide, highlighting the need to develop novel treatments for this disease. The current standard of care for HNSCC usually involves a combination of surgical resection, radiation therapy, and chemotherapy. Chemotherapy is notorious for its detrimental side effects including nausea, fatigue, hair loss, and more. Radiation therapy can be a challenge due to the anatomy of the head and neck area and presence of normal tissues. In addition to the drawbacks of chemotherapy and radiation therapy, high morbidity and mortality rates for HNSCC highlight the urgent need for alternative treatment options. Immunotherapy has recently emerged as a possible treatment option for cancers including HNSCC, in which monoclonal antibodies are used to help the immune system fight disease. Combining monoclonal antibodies approved by the US Food and Drug Administration, such as cetuximab and pembrolizumab, with radiotherapy or platinum-based chemotherapy for patients with locally advanced, recurrent, or metastatic HNSCC is an accepted first-line therapy. Targeted radionuclide therapy can potentially be used in conjunction with the first-line therapy, or as an additional treatment option, to improve patient outcomes and quality of life. Epidermal growth factor receptor is a known molecular target for HNSCC; however, other targets such as human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, programmed cell death protein 1, and programmed death-ligand 1 are emerging molecular targets for the diagnosis and treatment of HNSCC. To develop successful radiopharmaceuticals, it is imperative to first understand the molecular biology of the disease of interest. For cancer, this understanding often means detection and characterization of molecular targets, such as cell surface receptors, that can be used as sensitive targeting agents. The goal of this review article is to explore molecular targets for HNSCC and dissect previously conducted research in nuclear medicine and provide a possible path forward for the development of novel radiopharmaceuticals used in targeted radionuclide therapy for HNSCC, which has been underexplored to date.

13.
Pol Przegl Chir ; 96(4): 58-66, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-39138986

RESUMO

<b>Introduction:</b> Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) are malignancies originating from cells of the diffuse endocrine system. They are rare and localize in the upper and lower parts of the gastrointestinal tract and in the pancreas. Despite such a varied location, GEP-NENs are considered a common group of neoplasms due to the fact of their similar morphology and ability to secrete peptide hormones and biologically active amines. They are associated with clinical manifestations specific to the substances produced by a particular neoplasm. The classification of GEP-NENs is constantly systematized and updated based on their differentiation and grading. The development of available diagnostic and treatment methods for these tumors has made significant progress over the past 10 years and is still ongoing.<b>Aim:</b> In the following paper, we review the diagnostics and treatment of GEP-NENs, taking into account the latest molecular, immunological, or gene-based methods. Imaging methods using markers for receptors allow for high diagnostic sensitivity<b>Methods:</b> Medical databases were searched for the latest information. The authors also sought confirmation of the content of a particular publication in another publications, so as to present the most reliable information possible.<b>Results:</b> Research results revealed that the diagnostics and treatment of GEP-NENs have significantly advanced in recent years. Surgical interventions, especially minimally invasive techniques, have shown efficacy in treating GEP-NENs, with specific therapies such as somatostatin analogs, chemotherapy, and peptide receptor radionuclide therapy demonstrating promising outcomes. The evolution of diagnostic methods, including imaging techniques and biomarker testing, has contributed to improved patient care and prognosis.<b>Conclusions:</b> The increasing incidence of GEP-NENs is attributed to enhanced diagnostic capabilities rather than a rise in population prevalence. The study emphasizes the importance of ongoing research to identify specific markers for early detection and targeted therapies to further enhance the effectiveness of treating these rare and heterogeneous malignancies. The findings suggest a positive trajectory in the management of GEP-NENs, with future prospects focused on personalized and targeted treatment approaches.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/terapia , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/terapia , Masculino , Feminino
14.
Cancers (Basel) ; 16(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123352

RESUMO

INTRODUCTION: Currently, the diagnosis of salivary gland tumors using imaging techniques is unreliable. METHODS: In this monocentric retrospective study, we examined patients who received a 68Ga-DOTATOC PET/CT and subsequently underwent a salivary gland tumor resection between 1 January 2010 and 31 December 2021. PET/CT image assessment was compared with somatostatin receptor (SSTR) expression and histology. RESULTS: Thirteen patients (five pleomorphic adenoma (PA) and eight other parotid lesions (OPL)) received a 68Ga-DOTATOC PET/CT. Imaging displayed strong focal tracer uptake in all PA except for one with strong tumor to background discrimination. PA revealed higher SUVmax, SUVmean, liver and blood pool quotients than those of Warthin tumors (WT) and of OPL. In comparison to the contralateral parotid, SUVmax (p = 0.02), SUVmean (p = 0.02), liver quotient (p = 0.03) and blood pool quotient (p = 0.03) were all significantly higher. In contrast, WT and OPL showed in relation to the contralateral parotid no significant differences of SUVmax (WT p = 0.79; OPL p = 0.11), SUVmean (WT p = 1.0; OPL p = 0.08), liver quotient (WT p = 0.5; OPL p = 0.08) and blood pool quotient (WT p = 0.8; OPL p = 0.19). Two PA and one granuloma were not available for examination. In the immunohistochemal analysis, all PA demonstrated the highest intensity of SSTR2 expression (grade 3). Furthermore, PA had a high percentage of cells expressing SSTR2 (20%, 80% and 55%). CONCLUSIONS: A strong tracer uptake in PA was shown in 68Ga-DOTATOC PET/CT. This may allow physicians to utilize radioligated somatostatin analogue PET CT/MR imaging to accurately diagnose PA. Additionally, it may be possible in the future to treat the PA with a noninvasive peptide receptor radionuclide therapy or with somatostatin analogues.

15.
Cancers (Basel) ; 16(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123431

RESUMO

Rationale: Evaluating the long-term safety and efficacy of peptide receptor radionuclide therapy (PRRT) in patients with metastatic neuroendocrine tumors (mNETs) who have undergone prior bland hepatic transarterial embolization (TAE). Methods: Retrospective review of mNET patients who received PRRT with 177Lu-DOTATATE between 4/2018 and 02/2022 with and without prior TAE. The most recent clinical, imaging, and laboratory findings, including hepatic Common Terminology Criteria for Adverse Events v5.0, were compared to pre-PRRT. Results: 171 patients (95 M, 76 F, median age = 66) with mNET of different primary sites (9 foregut, 100 midgut, 9 hindgut, 44 pancreas, 9 unknown) received at least 1 cycle of PRRT with at least 6 months of follow-up, 110 of whom were embolization-naïve and 61 who had prior TAE. The median follow up was 22 months (range: 6-43). Patients with prior TAE had higher liver tumor burden on average than patients without prior TAE; however, the difference was not statistically significant (p = 0.06). There was no significant difference in the rates of G3 or G4 hepatotoxicity (p = 0.548 and p = 0.999, respectively) in patients who underwent prior TAE and those who were TAE-naïve. The hepatic progression-free survival was 22.9 months in TAE-naïve patients and 25.7, 20.2, and 12.8 months in patients with 1, 2, and 3 prior TAE treatments, respectively. Conclusion: Peptide receptor radionuclide therapy following transarterial bland embolization for mNET is safe and effective.

16.
Theranostics ; 14(11): 4318-4330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113794

RESUMO

Early use of targeted radionuclide therapy (TRT) to eradicate disseminated tumor cells (DTCs) might offer cure. Selection of appropriate radionuclides is required. This work highlights the potential of 103Pd (T1/2 = 16.991 d) which decays to 103mRh (T1/2 = 56.12 min) then to stable 103Rh with emission of Auger and conversion electrons. Methods: The Monte Carlo track structure code CELLDOSE was used to assess absorbed doses in single cells (14-µm diameter; 10-µm nucleus) and clusters of 19 cells. The radionuclide was distributed on the cell surface, within the cytoplasm, or in the nucleus. Absorbed doses from 103Pd, 177Lu and 161Tb were compared after energy normalization. The impact of non-uniform cell targeting, and the potential benefit from dual-targeting was investigated. Additional results related to 103mRh, if used directly, are provided. Results: In the single cell, and depending on radionuclide distribution, 103Pd delivered 7- to 10-fold higher nuclear absorbed dose and 9- to 25-fold higher membrane dose than 177Lu. In the 19-cell clusters, 103Pd absorbed doses also largely exceeded 177Lu. In both situations, 161Tb stood in-between 103Pd and 177Lu. Non-uniform targeting, considering four unlabeled cells within the cluster, resulted in moderate-to-severe dose heterogeneity. For example, with intranuclear 103Pd, unlabeled cells received only 14% of the expected nuclear dose. Targeting with two 103Pd-labeled radiopharmaceuticals minimized dose heterogeneity. Conclusion: 103Pd, a next-generation Auger emitter, can deliver substantially higher absorbed doses than 177Lu to single tumor cells and cell clusters. This may open new horizons for the use of TRT in adjuvant or neoadjuvant settings, or for targeting minimal residual disease.


Assuntos
Paládio , Radioisótopos , Paládio/química , Paládio/uso terapêutico , Paládio/administração & dosagem , Radioisótopos/uso terapêutico , Radioisótopos/farmacocinética , Humanos , Lutécio/uso terapêutico , Método de Monte Carlo , Neoplasias/radioterapia
17.
EJNMMI Res ; 14(1): 73, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136880

RESUMO

BACKGROUND: Peptide receptor radionuclide therapy (PRRT) uses [177Lu]Lu-[DOTA0-Tyr3]octreotate ([177Lu]Lu-DOTA-TATE) to treat patients with neuroendocrine tumours (NETs) overexpressing the somatostatin receptor 2A (SSTR2A). It has shown significant short-term improvements in survival and symptom alleviation, but there remains room for improvement. Here, we investigated whether combining [177Lu]Lu-DOTA-TATE with chemotherapeutics enhanced the in vitro therapeutic efficacy of [177Lu]Lu-DOTA-TATE. RESULTS: Transfected human osteosarcoma (U2OS + SSTR2A, high SSTR2A expression) and pancreatic NET (BON1 + STTR2A, medium SSTR2A expression) cells were subjected to hydroxyurea, gemcitabine or triapine for 24 h at 37oC and 5% CO2. Cells were then recovered for 4 h prior to a 24-hour incubation with 0.7-1.03 MBq [177Lu]Lu-DOTA-TATE (25 nM) for uptake and metabolic viability studies. Incubation of U2OS + SSTR2A cells with hydroxyurea, gemcitabine, and triapine enhanced uptake of [177Lu]Lu-DOTA-TATE from 0.2 ± 0.1 in untreated cells to 0.4 ± 0.1, 1.1 ± 0.2, and 0.9 ± 0.2 Bq/cell in U2OS + SSTR2A cells, respectively. Cell viability post treatment with [177Lu]Lu-DOTA-TATE in cells pre-treated with chemotherapeutics was decreased compared to cells treated with [177Lu]Lu-DOTA-TATE monotherapy. For example, the viability of U2OS + SSTR2A cells incubated with [177Lu]Lu-DOTA-TATE decreased from 59.5 ± 22.3% to 18.8 ± 5.2% when pre-treated with hydroxyurea. Control conditions showed no reduced metabolic viability. Cells were also harvested to assess cell cycle progression, SSTR2A expression, and cell size by flow cytometry. Chemotherapeutics increased SSTR2A expression and cell size in U2OS + SSTR2A and BON1 + STTR2A cells. The S-phase sub-population of asynchronous U2OS + SSTR2A cell cultures was increased from 45.5 ± 3.3% to 84.8 ± 2.5%, 85.9 ± 1.9%, and 86.6 ± 2.2% when treated with hydroxyurea, gemcitabine, and triapine, respectively. CONCLUSIONS: Hydroxyurea, gemcitabine and triapine all increased cell size, SSTR2A expression, and [177Lu]Lu-DOTA-TATE uptake, whilst reducing cell metabolic viability in U2OS + SSTR2A cells when compared to [177Lu]Lu-DOTA-TATE monotherapy. Further investigations could transform patient care and positively increase outcomes for patients treated with [177Lu]Lu-DOTA-TATE.

18.
Eur Urol Focus ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142998

RESUMO

Metastatic prostate cancer is a frequent and fatal disease. Targeted radionuclide therapy (TRT) has become a readily available therapeutic option since the approval of [177Lu]Lu-PSMA-617. Various molecules are currently being studied for TRT in prostate cancer. We review various combinations of isotopes and vectors being used to target prostate cancer cells and optimize pharmacokinetics. Promising innovations include chemical modifications to improve biodistribution, identification of new targets, and the use of novel radioisotopes such as α emitters. PATIENT SUMMARY: Our mini review summarizes research on targeted radioactive drugs for treatment of metastatic prostate cancer. Several promising radioactive pharmaceuticals are being evaluated in clinical trials, but more studies are necessary before these can be used in routine clinical practice.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39145784

RESUMO

PURPOSE: Somatostatin Receptor 2 (SSTR2)-targeted radiopharmaceutical [68Ga]Ga-DOTATATE has potential advantages in the diagnosis of nasopharyngeal carcinoma (NPC). This study introduces a novel long-lasting SSTR2 analogue, LNC1010, based on DOTATATE, a truncated Evans blue-binding moiety, and a polyethylene-glycol linker. We hypothesised that peptide receptor radionuclide therapy (PRRT) is more effective with [177Lu]Lu-LNC1010 than with [177Lu]Lu-DOTATATE in treating metastatic NPC. METHODS: We assessed binding characteristics of LNC1010 in vitro using C666-1 NPC cells and in-vivo pharmacokinetics of [68Ga]Ga/[177Lu]Lu-LNC1010 in C666-1 NPC xenografts via PET and SPECT imaging, biodistribution studies, and PRRT, and compared them with [68Ga]Ga/[177Lu] Lu-labelled DOTATATE. Furthermore, a proof-of-concept approach for imaging and therapy was conducted in a patient with metastatic NPC. RESULTS: LNC1010 exhibited strong uptake and specific affinity for SSTR2 in C666-1 NPC cells. PET and SPECT imaging demonstrated higher uptake and longer tumour retention of [68Ga]Ga/[177Lu]Lu-LNC1010 than [68Ga]Ga/[177Lu]Lu-DOTATATE in C666-1 NPC xenografts, indicating its suitability for PRRT applications in NPCs. Biodistribution studies confirmed the higher uptake and prolonged retention of [177Lu]Lu-LNC1010 than [177Lu]Lu-DOTATATE. In preclinical PRRT studies, [177Lu]Lu-LNC1010 showed greater inhibition of tumour growth in C666-1 NPC xenografts than [177Lu]Lu-DOTATATE. In a subsequent pilot clinical study, PRRT with [177Lu]Lu-LNC1010 achieved favourable therapeutic and negligible side effects in a patient with metastatic NPC. CONCLUSION: [177Lu]Lu-LNC1010 demonstrated increased tumour uptake and prolonged retention in SSTR2-positive NPCs, with superior anti-tumour efficacy to that of [177Lu]Lu-DOTATATE in preclinical studies. These findings suggest that PRRT with [177Lu]Lu-LNC1010 is a promising treatment for advanced NPC, extending the clinical scope of PRRT beyond neuroendocrine tumours.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39147601

RESUMO

Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ultrasmall silver telluride nanoparticles with a core diameter of 2.1 nm were prepared and radiolabeled with lead-212 using a chelator-free method with a radiolabeling efficiency of 75%. The results from the in vitro radiochemical stability assay indicated a very high retention of bismuth-212 despite the internal conversion effects originating from the decay of 212Pb. To further evaluate the potential of the nanoparticles, they were radiolabeled with indium-111, and their cell uptake and subcellular distribution were determined in 2D U87 cells, showing accumulation in the nucleus. Although not intentional, it was observed that the indium-111-radiolabeled nanoparticles induced efficient tumor cell killing, which was attributed to the Auger electrons emitted by indium-111. Combining the results obtained in this work with other favorable properties such as fast renal clearance and the possibility to attach targeting vectors on the surface of the nanoparticles, all well-known from the literature, these ultra-small silver telluride nanoparticles provide exciting opportunities for the design of theragnostic radiopharmaceuticals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA