Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611743

RESUMO

Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.

2.
J Colloid Interface Sci ; 624: 527-536, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35679640

RESUMO

The single atom catalysts have been widely studied in the catalytic reaction due to their 100% atomic utilization and ultra-high catalytic activity. However, the catalytic removal of formaldehyde on single atom catalysts have not been studied extensively and its catalytic mechanism is still unclear. In this work, atomically dispersed Co catalysts anchored in porous nitrogen-doped carbon were synthetized and the coordination environment of single Co atoms were further proved by the results of XAFS spectrum. The optimal atomically dispersed Co catalysts preformed outstanding removal performance for low-concentration HCHO (∼1 ppm) at room temperature. Furthermore, DFT calculations reveal the HCHO removal mechanism on atomically dispersed Co catalysts, which showed that HCHO molecules can react with O2 molecules adsorbed on single-atom Co sites through the Langmuir-Hinshelwood (L-H) pathway to generate CO2 and H2O at room temperature (HCHO â†’ HCOO* → CO2). This work provides a promising lead for exploring single-atom Co catalysts for HCHO oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA