Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(18): e37233, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309949

RESUMO

Background: Microvascular invasion (MVI) is associated with an unfavorable prognosis and early recurrence of hepatocellular carcinoma (HCC), which is the crucial pathological hallmark of immunotherapy. While microvascular invasion (MVI) in hepatocellular carcinoma (HCC) currently lacks a detailed single-cell analysis of the tumor microenvironment (TME), it holds significant promise for immunotherapy using immune checkpoint inhibitors (ICI). Methods: We performed single-cell RNA sequencing (scRNA-seq) on 3 MVI positive (MVIP) and 14 MVI-negative (MVIN) tumor tissues, as well as their paired adjacent non-tumoral tissues. Results: We identified SPP1+ macrophages and CD4+ proliferative T cells as intertumoral populations critical for the formation of cold tumors and immunosuppressive environments in MVI-positive patients and verified their prognostic value in correlation with MVIP HCC patients. Additionally, we identified SPP1+ dominated interactions between SPP1+ macrophages and the immunosuppressive T population as contributors to MVI destruction and tumorigenesis. Conclusions: We provide a comprehensive single-cell atlas of HCC patients with MVI, shedding light on the immunosuppressive ecosystem and upregulated signaling associated with MVI. These findings demonstrate that intercellular mechanisms drive MVI and provide a potential immunotherapeutic target for HCC patients with HCC and underlying MVI.

2.
Cancer Lett ; 604: 217199, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216547

RESUMO

Macrophages play a multifaceted role in cancer biology, with both pro-tumorigenic and anti-tumorigenic functions. Understanding the mechanisms underlying macrophage involvement in cancer progression is essential for the development of therapeutic strategies. Our study analyzed single-cell RNA sequencing data from 12 patients with liver cancer and identified a subpopulation of macrophages characterized by elevated expression of SPP1, which correlates with poor prognosis in liver cancer patients. These SPP1+ macrophages induce upregulation of tumor stemness through a vitronectin (VTN)-dependent paracrine mechanism. Mechanistically, VTN derived from SPP1+ macrophages promote integrin αvß5/adenosine 5'-monophosphate-activated protein kinase (AMPK)/Yes-associated protein 1 (YAP1)/SYR-box transcription factor 4 (SOX4) signaling, mediating liver tumor stemness and progression. Conversely, CCL15 produced by liver cancer cells drives polarization of M0 macrophages toward an SPP1+ macrophage phenotype, establishing a positive feedback loop of macrophage-tumor stemness. Furthermore, the presence of SPP1+ macrophages confers chemoresistance in liver cancer, and inhibition of the macrophage-tumor feedback loop through targeting integrin αvß5/YAP1 signaling sensitizes liver cancer cells to chemotherapy. Our study highlights the crucial role of SPP1+ macrophages in liver cancer progression, providing novel insights for clinical liver cancer therapy.


Assuntos
Neoplasias Hepáticas , Macrófagos , Células-Tronco Neoplásicas , Osteopontina , Transdução de Sinais , Vitronectina , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Vitronectina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Macrófagos/metabolismo , Osteopontina/metabolismo , Osteopontina/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas de Sinalização YAP/metabolismo , Masculino , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética
3.
Sci Rep ; 14(1): 18156, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103421

RESUMO

Senescence of skeletal muscle (SkM) has been a primary contributor to senior weakness and disability in recent years. The gradually declining SkM function associated with senescence has recently been connected to an imbalance between damage and repair. Macrophages (Mac) are involved in SkM aging, and different macrophage subgroups hold different biological functions. Through comprehensive single-cell transcriptomic analysis, we first compared the metabolic pathways and biological functions of different types of cells in young (Y) and old (O) mice SkM. Strikingly, the Mac population in mice SkM was also explored, and we identified a unique Mac subgroup in O SkM characterized by highly expressed SPP1 with strong senescence and adipogenesis features. Further work was carried out on the metabolic and biological processes for these Mac subgroups. Besides, we verified that the proportion of the SPP1+ Mac was increased significantly in the quadriceps tissues of O mice, and the senotherapeutic drug combination dasatinib + quercetin (D + Q) could dramatically reduce its proportion. Our study provides novel insight into the potential role of SPP1+ Mac in SkM, which may serve as a senotherapeutic target in SkM aging.


Assuntos
Envelhecimento , Dasatinibe , Macrófagos , Músculo Esquelético , Análise de Célula Única , Transcriptoma , Animais , Masculino , Camundongos , Adipogenia/genética , Envelhecimento/genética , Senescência Celular/genética , Dasatinibe/farmacologia , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Quercetina/farmacologia , Senoterapia/farmacologia
4.
Comput Struct Biotechnol J ; 21: 5751-5764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074471

RESUMO

The incidence of lung cancer (LC) in Idiopathic Pulmonary Fibrosis (IPF) patients is more than twice that in non-IPF. This study aims to investigate IPF-to-LC pathogenesis and to develop a predictor for detecting IPF predisposing patients to LC. We conducted unsupervised clustering to detect high-risk subtypes from IPF to LC. Subsequently, we performed single-cell RNA-seq analysis to characterize high-risk IPF by examining the immune microenvironment. We identified 42 common immune function-related pathogenic genes between IPF and LC. We developed an LC risk classifier for IPF patients, comprising five genes: SPP1, MMP9, MMP12, FABP4, and IL1B. The five-gene classifier can successfully distinguish the high-risk population from IPF patients. High-risk IPF patients exhibited an immunosuppressive microenvironment with higher oncogene expression than low-risk patients. Single-cell analysis revealed that SPP1+ macrophages at the terminal of macrophages' developmental trajectory may promote the progression from IPF to LC. The strong crosstalk between SPP1+ macrophages and inflammation-related cancer-associated fibroblasts promoted the tumorigenic process in IPF. In vitro, assays showed that co-culturing macrophages overexpressing SPP1 with MRC-5 cells induced the transition of fibroblasts into cancer-associated fibroblasts. SPP1 produced by macrophages promoted epithelial-mesenchymal transition in alveolar epithelial cells via stimulating the upregulation of N-cadherin and Vimentin in MLE-12 cells. This study provided a novel method to identify the LC risk population from IPF, revealing the cellular interactions involved in the transition from IPF to LC. Our findings highlighted SPP1 as a critical driver in IPF progression, offering a potential target for therapy in fibrosis.

5.
Cell Rep ; 42(2): 112131, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807143

RESUMO

Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.


Assuntos
Macrófagos , Miofibroblastos , Humanos , Fibrose , Ligantes , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Osteopontina , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo
6.
Front Immunol ; 13: 1067338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569953

RESUMO

Introduction: Hydatid cysts and angiogenesis are the key characteristics of cystic echinococcosis, with immune cells and endothelial cells mediating essential roles in disease progression. Recent single-cell analysis studies demonstrated immune cell infiltration after Echinococcus granulosus infection, highlighting the diagnostic and therapeutic potential of targeting certain cell types in the lesion microenvironment. However, more detailed immune mechanisms during different periods of E. granulosus infection were not elucidated. Methods: Herein, we characterized immune and endothelial cells from the liver samples of mice in different stages by single-cell RNA sequencing. Results: We profiled the transcriptomes of 45,199 cells from the liver samples of mice at 1, 3, and 6 months after infection (two replicates) and uninfected wild-type mice. The cells were categorized into 26 clusters with four distinct cell types: natural killer (NK)/T cells, B cells, myeloid cells, and endothelial cells. An SPP1+ macrophage subset with immunosuppressive and pro-angiogenic functions was identified in the late infection stage. Single-cell regulatory network inference and clustering (SCENIC) analysis suggested that Cebpe, Runx3, and Rora were the key regulators of the SPP1+ macrophages. Cell communication analysis revealed that the SPP1+ macrophages interacted with endothelial cells and had pro-angiogenic functions. There was an obvious communicative relationship between SPP1+ macrophages and endothelial cells via Vegfa-Vegfr1/Vegfr2, and SPP1+ macrophages interacted with other immune cells via specific ligand-receptor pairs, which might have contributed to their immunosuppressive function. Discussion: Our comprehensive exploration of the cystic echinococcosis ecosystem and the first discovery of SPP1+ macrophages with infection period specificity provide deeper insights into angiogenesis and the immune evasion mechanisms associated with later stages of infection.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Camundongos , Células Endoteliais/patologia , Ecossistema , Macrófagos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA