Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
J Orthop Surg Res ; 19(1): 531, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218922

RESUMO

BACKGROUND: Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS: In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS: The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION: These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.


Assuntos
Glucosídeos , Fator 2 Relacionado a NF-E2 , Fenóis , Simulação de Ausência de Peso , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Animais , Fenóis/farmacologia , Fenóis/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Simulação de Ausência de Peso/efeitos adversos , Ratos , Masculino , Heme Oxigenase-1/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ausência de Peso/efeitos adversos , Osteogênese/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Elevação dos Membros Posteriores , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Densidade Óssea/efeitos dos fármacos , Proteínas de Membrana
2.
Biol Pharm Bull ; 47(9): 1550-1556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313391

RESUMO

Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.


Assuntos
Injúria Renal Aguda , Apoptose , Glucosídeos , Mitocôndrias , Estresse Oxidativo , Fenóis , Sepse , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Modelos Animais de Doenças
3.
J Trace Elem Med Biol ; 86: 127521, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243731

RESUMO

BACKGROUND: Cadmium (Cd) is an environmental pollutant and a heavy metal known for its genotoxic effects, which can lead to cancer and other related diseases. Preventing Cd-induced genotoxicity is crucial; however, there is limited research on this topic. Salidroside (SAL), a phenylpropanoid glycoside isolated from Rhodiola rosea L., is a popular medicinal compound with several health benefits. Nevertheless, its therapeutic effect on Cd-induced genotoxicity remains unexplored. METHODS: Human fetal lung fibroblasts were treated with 20 µM Cd2+ (CdCl2) for 12 h and 5-20 µM SAL was used to test the anti-DNA damage effect. DNA damage was evaluated using γH2AX expression and the alkaline comet assay. Intracellular reactive oxygen species (ROS) levels were measured using flow cytometry. RESULTS: Exposure to 20 µM Cd2+ for 12 h induced significant DNA damage in human fetal lung fibroblasts, and this effect was notably attenuated by SAL treatment. SAL treatment did not decrease ROS levels in cells treated with Cd2+. CONCLUSION: SAL effectively prevented Cd2+-induced DNA damage in human fetal lung fibroblasts. However, the underlying mechanism requires further investigation.

4.
Nutrients ; 16(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125268

RESUMO

Rhodiola rosea, a long-lived herbaceous plant from the Crassulaceae group, contains the active compound salidroside, recognized as an adaptogen with significant therapeutic potential for bone metabolism. Salidroside promotes osteoblast proliferation and differentiation by activating critical signaling pathways, including bone morphogenetic protein-2 and adenosine monophosphate-activated protein kinase, essential for bone formation and growth. It enhances osteogenic activity by increasing alkaline phosphatase activity and mineralization markers, while upregulating key regulatory proteins including runt-related transcription factor 2 and osterix. Additionally, salidroside facilitates angiogenesis via the hypoxia-inducible factor 1-alpha and vascular endothelial growth factor pathway, crucial for coupling bone development with vascular support. Its antioxidant properties offer protection against bone loss by reducing oxidative stress and promoting osteogenic differentiation through the nuclear factor erythroid 2-related factor 2 pathway. Salidroside has the capability to counteract the negative effects of glucocorticoids on bone cells and prevents steroid-induced osteonecrosis. Additionally, it exhibits multifaceted anti-inflammatory actions, notably through the inhibition of tumor necrosis factor-alpha and interleukin-6 expression, while enhancing the expression of interleukin-10. This publication presents a comprehensive review of the literature on the impact of salidroside on various aspects of bone tissue metabolism, emphasizing its potential role in the prevention and treatment of osteoporosis and other diseases affecting bone physiology.


Assuntos
Osso e Ossos , Glucosídeos , Osteoblastos , Osteogênese , Osteoporose , Fenóis , Glucosídeos/farmacologia , Humanos , Fenóis/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Animais , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Rhodiola/química , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 810-817, 2024 May 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39174895

RESUMO

With the rapid development of traditional Chinese medicine and the continuous discovery of various anticancer effects of salidroside (sal), it is known that sal inhibits tumor proliferation, invasion and migration by inducing apoptosis and autophagy, regulating the cell cycle, modulating the tumor microenvironment, and controlling cancer-related signaling pathways and molecules. The microRNA (miRNA)-mRNA signaling axis can regulate the expression of target mRNAs by altering miRNA expression, thereby affecting the growth cycle, proliferation, and metabolism of cancer cells. Studies have shown that sal can influence the occurrence and progression of various malignant tumors through the miRNA-mRNA signaling axis, inhibiting the progression of lung cancer, gastric cancer, and nasopharyngeal carcinoma, with a notable time and dose dependence in its antitumor effects. Summarizing the specific mechanism of sal regulating miRNA-mRNA signaling axis to inhibit tumors in recent years can provide a new theoretical basis, diagnosis, and therapeutic methods for the research on prevention and treatment of tumors.


Assuntos
Glucosídeos , MicroRNAs , Fenóis , RNA Mensageiro , Transdução de Sinais , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fenóis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Microambiente Tumoral/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Animais
6.
Hum Exp Toxicol ; 43: 9603271241269028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39197164

RESUMO

BACKGROUND AND OBJECTIVE: The objective of this study was to investigate the potential of salidroside (SAL) (a major active compound in Rhodiola rosea L.) in regulating osteoclast differentiation and function by modulating the HIF-1α pathway and its downstream target genes. METHODS: The expression of HIF-1α and its downstream target genes was examined at both mRNA and protein levels in osteoclasts treated with SAL. Immunofluorescence analysis was performed to assess the nuclear translocation and transcriptional activity of HIF-1α in response to SAL. MTT, flow cytometry, qPCR, TRAP staining and bone resorption assays were used to evaluate the potential effect of salidroside on osteoclasts. RESULTS: SAL enhanced the expression of HIF-1α and its downstream target genes in osteoclasts. Immunofluorescence analysis confirmed the facilitation of HIF-1α nuclear translocation and transcriptional activity by SAL. In addition, SAL enhanced osteoclast viability, differentiation and bone resorption activity in an autocrine manner through HIF-1α/VEGF, IL-6 and ANGPTL4 pathways. CONCLUSION: SAL promotes osteoclast proliferation, differentiation and bone resorption through HIF-1α/VEGF, IL-6 and ANGPTL4 pathways.


Assuntos
Glucosídeos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteoclastos , Osteogênese , Fenóis , Glucosídeos/farmacologia , Fenóis/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Osteoclastos/efeitos dos fármacos , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células RAW 264.7 , Interleucina-6/metabolismo , Interleucina-6/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Reabsorção Óssea , Transdução de Sinais/efeitos dos fármacos , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
7.
Phytomedicine ; 134: 155583, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173548

RESUMO

BACKGROUND: Ischemic stroke is a significant cause of death and disability with a limited treatment time window. The reduction of early glutamate excitotoxicity using neuroprotective agents targeting N-methyl-d-aspartic acid (NMDA) receptors have attracted recent research attention. SHPL-49, a structurally modified derivative of salidroside, was synthesized by our team. Previous studies have confirmed the neuroprotective efficacy of SHPL-49 in rats with ischemic stroke. However, the underlying mechanisms need to be clarified. METHODS: We conducted in vivo experiments using the permanent middle cerebral artery occlusion rat model to investigate the role of SHPL-49 in glutamate release at different time points and treatment durations. Glutamate transporters and receptor proteins and neural survival proteins in the brain were also examined at the same time points. In vitro, primary neurons and the coculture system of primary neurons-astrocytes were subjected to oxygen-glucose deprivation and glutamate injury. Proteomics and parallel reaction monitoring analyses were performed to identify potential therapeutic targets of SHPL-49, which were further confirmed through in vitro experiments on the inhibition and mutation of the target. RESULTS: SHPL-49 significantly reduced glutamate release caused by hypoxia-ischemia. One therapeutic pathway of SHPL-49 was promoting the expression of glutamate transporter-1 to increase glutamate reuptake and further reduce the occurrence of subsequent neurotoxicity. In addition, we explored the therapeutic targets of SHPL-49 and its regulatory effects on glutamate receptors for the first time. SHPL-49 enhanced neuroprotection by activating the NMDA subunit NR2A, which upregulated the cyclic-AMP response binding protein (CREB) neural survival pathway and Akt phosphorylation. Since calcium/calmodulin-dependent kinase IIα (CaMKIIα) is necessary for synaptic transmission of NMDA receptors, we explored the interaction between CaMKIIα and SHPL-49, which protected CaMKIIα from hypoxia-ischemia-induced autophosphorylation damage. CONCLUSION: Overall, SHPL-49 enhanced neuronal survival and attenuated acute ischemic stroke by promoting the NR2A-CAMKⅡα-Akt/CREB pathway. Our study provides the first evidence demonstrating that the neuroprotective effect of SHPL-49 is achieved by promoting the NR2A subunit to extend the treatment time window, making it a promising drug for ischemic stroke.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Glucosídeos , Ácido Glutâmico , AVC Isquêmico , Neurônios , Fármacos Neuroprotetores , Fenóis , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Glucosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Masculino , AVC Isquêmico/tratamento farmacológico , Fenóis/farmacologia , Fenóis/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório
8.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3356-3364, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041099

RESUMO

This study aims to examine the effect of salidroside(SAL) on the phenotypic switching of human aortic smooth muscle cells(HASMC) induced by the platelet-derived growth factor-BB(PDGF-BB) and investigate the pharmacological mechanism. Firstly, the safe concentration of SAL was screened by the lactate dehydrogenase release assay. HASMC were divided into control, model, and SAL groups, and the cells in other groups except the control group were treated with PDGF-BB for the modeling of phenotypic switching. Cell proliferation and migration were detected by the cell-counting kit(CCK-8) assay and Transwell assay, respectively. The cytoskeletal structure was observed by F-actin staining with fluorescently labeled phalloidine. The protein levels of proliferating cell nuclear antigen(PCNA), migration-related protein matrix metalloprotein 9(MMP-9), fibronectin, α-smooth muscle actin(α-SMA), and osteopontin(OPN) were determined by Western blot. To further investigate the pharmacological mechanism of SAL, this study determined the expression of protein kinase B(Akt) and mammalian target of rapamycin(mTOR), as well as the upstream proteins phosphatase and tensin homologue(PTEN) and platelet-derived growth factor receptor ß(PDGFR-ß) and the downstream protein hypoxia-inducible factor-1α(HIF-1α) of the Akt/mTOR signaling pathway. The results showed that the HASMCs in the model group presented significantly increased proliferation and migration, the switching from a contractile phenotype to a secretory phenotype, and cytoskeletal disarrangement. Compared with the model group, SAL weakened the proliferation and migration of HASMC, promoted the expression of α-SMA(a contractile phenotype marker), inhibited the expression of OPN(a secretory phenotype marker), and repaired the cytoskeletal disarrangement. Furthermore, compared with the control group, the modeling up-regulated the levels of phosphorylated Akt and mTOR and the relative expression of PTEN, HIF-1α, and PDGFR-ß. Compared with the model group, SAL down-regulated the protein levels of phosphorylated Akt and mTOR, PTEN, PDGFR-ß, and HIF-1α. In conclusion, SAL exerts a protective effect on the HASMCs exposed to PDGF-BB by regulating the PDGFR-ß/Akt/mTOR/HIF-1α signaling pathway.


Assuntos
Movimento Celular , Proliferação de Células , Glucosídeos , Miócitos de Músculo Liso , Fenóis , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Fenóis/farmacologia , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Transdução de Sinais/efeitos dos fármacos , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Cultivadas , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Becaplermina/farmacologia , Aorta/efeitos dos fármacos , Aorta/citologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Osteopontina/metabolismo , Osteopontina/genética
9.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969153

RESUMO

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Assuntos
Ração Animal , Bass , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Glucosídeos , Fenóis , Animais , Bass/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Glucosídeos/administração & dosagem , Glucosídeos/farmacologia , Fenóis/administração & dosagem , Fenóis/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga , Distribuição Aleatória
10.
Biomed Pharmacother ; 177: 116968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901199

RESUMO

OBJECTIVE: To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson's Disease (PD). METHODS: The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene. Mouse plasma was prepared and analyzed by LC-MS to obtain differential metabolites. In vitro experiments were verified by immunofluorescence and lentiviral transduction. RESULTS: ELISA signaled that Sal facilitated the reduction of neuronal damage and inflammatory reaction in mice. MPTP_Sal_Low and MPTP_Sal_High groups had high levels of glial cell derived neurotrophie factor (GDNF) expression. Differentially expressed genes (DEGs) in control group, MPTP group and MPTP_Sal_High group were identified by transcriptomic, which were classified to the mitogen-activated protein kinase (MAPK) signaling pathway, and the core gene Braf was obtained. Metabolomics manifested that the differential metabolites involved DL-tyrosine, adenosine, phosphoenolpyruvate, and L-tryptophan. In vitro experiments verified that Sal treatment inhibited the up-regulation of p-p38, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal-regulated kinase (ERK) expression, and growth of neuronal protrusions. The OE-Braf group showed a significant up-regulation of the GDNF expression, a decrease in the expression of p-p38, p-JNK, and p-ERK, and a significant growth of neuronal protrusions. CONCLUSION: Sal may exert its effects in PD through the Braf-mediated MAPK signaling pathway, which can increase GDNF expression and promote neuronal protrusion growth for the protection of neurological function and the improvement of cognitive function.


Assuntos
Cognição , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Glucosídeos , Sistema de Sinalização das MAP Quinases , Fenóis , Proteínas Proto-Oncogênicas B-raf , Animais , Masculino , Camundongos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glucosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fenóis/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 722: 150132, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788354

RESUMO

OBJECTIVE: The present study aims to investigate the protective potential of salidroside in both lung ischemia/reperfusion injury (LIRI) mice model and cell hypoxia/reoxygenation (H/R)model and the involvement of ferroptosis and JAK2/STAT3 pathway. MATERIALS AND METHODS: After we established the IR-induced lung injury model in mice, we administered salidroside and the ferroptosis inhibitor, ferrostatin-1, then assessed the lung tissue injury, ferroptosis (levels of reactive oxygen species level, malondialdehyde and glutathione), and inflammation in lung tissues. The levels of ferroptosis-related proteins (glutathione peroxidase 4, fibroblast-specific protein 1, solute carrier family 1 member 5 and glutaminase 2) in the lung tissue were measured with Western blotting. Next, BEAS-2B cells were used to establish an H/R cell model and treated with salidroside or ferrostatin-1 before the cell viability and the levels of lactate dehydrogenase (LDH), inflammatory factor, ferroptosis-related proteins were measured. The activation of the JAK2/STAT3 signaling pathway was measured with Western blotting, then its role was confirmed with STAT3 knockdown. RESULTS: Remarkably, salidroside was found to alleviate ferroptosis, inflammation, and lung injury in LIRI mice and the cell injury in H/R cell model. Severe ferroptosis were observed in LIRI mice models and H/R-induced BEAS-2B cells, which was alleviated by salidroside. Furthermore, salidroside could inhibit JAK2/STAT3 activation induced by LIRI. STAT3 knockdown could enhance the effect of salidroside treatment on H/R-induced cell damage and ferroptosis in vitro. CONCLUSIONS: Salidroside inhibits ferroptosis to alleviate lung ischemia reperfusion injury via the JAK2/STAT3 signaling pathway.


Assuntos
Ferroptose , Glucosídeos , Janus Quinase 2 , Fenóis , Traumatismo por Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Fenóis/farmacologia , Fenóis/uso terapêutico , Animais , Ferroptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Glucosídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Linhagem Celular , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia
12.
Front Pharmacol ; 15: 1377836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818379

RESUMO

Testicular torsion is a critical urologic condition for which testicular detorsion surgery is considered irreplaceable as well as the golden method of reversal. However, the surgical treatment is equivalent to a blood reperfusion process, and no specific drugs are available to treat blood reperfusion injuries. Salidroside (SAL) is one of the main effective substances in rhodiola, which has been shown to have antioxidant and antiapoptosis activities. This study was designed to determine whether SAL exerted a protective effect on testicular ischemia-reperfusion (I/R) injury. In this study, the I/R injury model of the testes and reoxygenation (OGD/R) model were used for verification, and SAL was administered at doses of 100 mg/kg and 0.05 mmol/L, respectively. After the experiments, the testicular tissue and TM4 Sertoli cells were collected for histopathologic and biochemical analyses. The results revealed that SAL improves the structure of testicular tissue and regulates the oxidation-antioxidation system. To further understand the molecular mechanisms of SAL in treating testicular I/R injuries, transcriptomics and metabonomics analyses were integrated. The results show that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway is enriched significantly, indicating that it may be the main regulatory pathway for SAL in the treatment of testicular I/R injuries. Thereafter, transfection with Nrf2 plasmid-liposome was used to reverse verify that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway was the main pathway for SAL anti-testicular I/R injury treatment. Thus, it is suggested that SAL can protect against testicular I/R injuries by regulating the Nfr2/HO-1/GPX4 signaling pathway to inhibit ferroptosis and that SAL may be a potential drug for the treatment of testicular I/R injuries.

13.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727159

RESUMO

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Assuntos
Glucosídeos , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenóis , Sirtuína 1 , Animais , Camundongos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Tamanho da Partícula , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo
14.
Food Chem X ; 22: 101406, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38707782

RESUMO

We aimed to explore the effect of salidroside (SAL) on meat quality, antioxidant capacity, and lipid metabolism in broilers. The results demonstrated that SAL significantly reduced the yellowness (b*), shear force, cooking loss, drip loss, MDA, TBARS, and carbonyl content in breast (P < 0.05), while increasing the pH value (P < 0.05), suggesting an improvement in meat quality. SAL lowered the lipid contents in liver and serum (P < 0.05), while increasing the proportion of unsaturated fatty acids in breast (P < 0.05), indicating effective regulation of lipid metabolism by SAL. SAL increased the activity of antioxidant enzymes and the expression of antioxidant genes in both liver and muscle (P < 0.05). Additionally, SAL improved the meat quality and antioxidant capacity of breast subjected to repeated freeze-thaw treatment. SAL may enhance meat quality by improving antioxidative stability and regulating lipid metabolism, potentially serving as a dietary supplement for broilers.

15.
Exp Cell Res ; 438(1): 114034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588875

RESUMO

Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.


Assuntos
Proliferação de Células , Ferroptose , Glucosídeos , Melanoma , Mitocôndrias , Fenóis , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Fenóis/farmacologia , Glucosídeos/farmacologia , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos
16.
J Hazard Mater ; 470: 134129, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565019

RESUMO

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Assuntos
Rim , Parabenos , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Glucosídeos/farmacologia , Células HEK293 , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Parabenos/toxicidade , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Pharmacol Res ; 203: 107179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615876

RESUMO

Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.


Assuntos
Produtos Biológicos , Exossomos , Medicina Tradicional Chinesa , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
18.
Phytomedicine ; 128: 155365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552436

RESUMO

BACKGROUND: Ferroptosis, a form of regulated cell death (RCD) that relies on excessive reactive oxygen species (ROS) generation, Fe2+accumulation, abnormal lipid metabolism and is involved in various organ ischemia/reperfusion (I/R) injury, expecially in myocardium. Mitochondria are the powerhouses of eukaryotic cells and essential in regulating multiple RCD. However, the links between mitochondria and ferroptosis are still poorly understood. Salidroside (Sal), a natural phenylpropanoid glycoside isolated from Rhodiola rosea, has mult-bioactivities. However, the effects and mechanism in alleviating ferroptosis caused by myocardial I/R injury remains unclear. PURPOSE: This study aimed to investigate whether pretreated with Sal could protect the myocardium against I/R damage and the underlying mechanisms. In particular, the relationship between Sal pretreatment, AMPKα2 activity, mitochondria and ROS generation was explored. STUDY DESIGN AND METHODS: Firstly, A/R or I/R injury models were employed in H9c2 cells and Sprague-Dawley rats. And then the anti-ferroptotic effects and mechanism of Sal pretreatment was detected using multi-relevant indexes in H9c2 cells. Further, how does Sal pretreatment in AMPKα2 phosphorylation was explored. Finally, these results were validated by I/R injury in rats. RESULTS: Similar to Ferrostatin-1 (a ferroptosis inhibitor) and MitoTEMPO, a mitochondrial free radical scavenger, Sal pretreatment effectively alleviated Fe2+ accumulation, redox disequilibrium and maintained mitochondrial energy production and function in I/R-induced myocardial injury, as demonstrated using multifunctional, enzymatic, and morphological indices. However, these effects were abolished by downregulation of AMPKα2 using an adenovirus, both in vivo and in vitro. Moreover, the results also provided a non-canonical mechanism that, under mild mitochondrial ROS generation, Sal pretreatment upregulated and phosphorylated AMPKα2, which enhanced mitochondrial complex I activity to activate innate adaptive responses and increase cellular tolerance to A/R injury. CONCLUSION: Overall, our work highlighted mitochondria are of great impotance in myocardial I/R-induced ferroptosis and demonstrated that Sal pretreatment activated AMPKα2 against I/R injury, indicating that Sal could become a candidate phytochemical for the treatment of myocardial I/R injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Ferroptose , Glucosídeos , Traumatismo por Reperfusão Miocárdica , Fenóis , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Rhodiola , Ferroptose/efeitos dos fármacos , Fenóis/farmacologia , Animais , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Masculino , Rhodiola/química , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos
19.
Cancer Biol Ther ; 25(1): 2322206, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38436092

RESUMO

Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.


Assuntos
Glucosídeos , MicroRNAs , Fenóis , Neoplasias Gástricas , Humanos , Proliferação de Células , Metaloproteinases da Matriz Associadas à Membrana , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , MAP Quinase Quinase Quinases/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo
20.
Neurochem Res ; 49(5): 1291-1305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424396

RESUMO

Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons, with ferroptosis playing a significant role. Salidroside (SAL) has shown neuroprotective potential, this study aims to explore its capacity to mitigate ferroptosis in PD, focusing on the modulation of the Nuclear Factor E2-Related Factor 2 (Nrf2)/ Glutathione Peroxidase 4 (GPX4) pathway. Male C57BL/6 mice were subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like symptoms, followed by SAL and Nrf2 inhibitor administration. Then behavioral tests, immunohistochemical staining, transmission electron microscopy, and Western blot analysis were conducted to assess motor functions, pathological changes, ferroptosis, and related protein expressions. In vitro, SH-SY5Y cells were treated with erastin to induce ferroptosis to assess the protective effects of SAL. Additionally, A53T-α-synuclein (α-syn) was used to stimulate the PD model, SAL and a Nrf2 inhibitor (ML385) was utilized to elucidate the role of the Nrf2/GPX4 pathway in mitigating ferroptosis in PD. In vivo, SAL significantly improved motor functions and reduced the expression of α-syn, while increasing tyrosine hydroxylase (TH) expression of PD mice. Additionally, SAL treatment notably enhanced the levels of antioxidants and reduced MDA and iron content in the substantia nigra of PD mice. In vitro, SAL treatment increased the TH, GPX4, Nrf2 expression, and mitochondrial membrane potential whereas alleviated ferroptosis through the Nrf2/GPX4 pathway, as evidenced in erastin-induced and α-syn overexpressing SH-SY5Y cells. While these effects were reversed upon Nrf2 inhibition. SAL demonstrates significant potential in mitigating PD pathology and ferroptosis, positioning the Nrf2/GPX4 pathway as a promising therapeutic target. However, future studies should focus on the long-term effects of SAL, its pharmacokinetics, addressing the multifactorial nature of PD pathogenesis.


Assuntos
Ferroptose , Glucosídeos , Neuroblastoma , Doença de Parkinson , Fenóis , Masculino , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA