Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Int Immunopharmacol ; 138: 112559, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955028

RESUMO

BACKGROUND: Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS: Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS: Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS: Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.


Assuntos
Proliferação de Células , Endometriose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos , Semaforina-3A , Endometriose/patologia , Endometriose/imunologia , Endometriose/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Feminino , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Movimento Celular , Endométrio/patologia , Endométrio/metabolismo , Células Estromais/metabolismo , Células Cultivadas , Hipóxia/metabolismo , Adulto , Modelos Animais de Doenças , Diferenciação Celular
2.
Curr Rheumatol Rev ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39034724

RESUMO

BACKGROUND: Juvenile-onset systemic lupus erythematosus (jSLE) is an uncommon yet severe autoimmune/inflammatory condition affecting multiple bodily systems, typically manifest-ing before the age of 18. This disease exhibits significant complexity, displaying considerable variation among patients. Its effects can range in severity from minor to fatal, characterized by a pattern of recurring flare-ups and periods of remission, making its natural progression difficult to predict. AIM OF THE WORK: The aim of this work is to investigate the correlation between semaphorin 3A and systemic lupus erythematosus patients who follow up at Pediatric Rheumatology Unit Chil-dren's Hospital at Cairo University. PATIENTS & METHODS: This cross-sectional research was performed at the Pediatric Rheumatology Unit Cairo University Children's Hospital and included cases with jSLE under treatment and fol-low-up from the period of August 2021 to August 2022. RESULTS: Regarding demographic data of the studied subjects, highly significant variances were noted among the patient group & control group regarding age (years) & sex. However, there were non-significant variances among the patient group and control group concerning weight. In the current research, median (IQR) onset of disease was 2 (1 3) years, mean ± SD age at dis-ease diagnosis was 8.98 ± 2.13 years, median (IQR) disease duration 2 (1 3) years, family history was negative in 36 (90.0%) patients and consanguinity was negative in 28 (70.0%). The distribution of the manifestations within the patients group was as follow 7 (17.5%) with mu-cocutaneous, 7 (17.5%) with vasculitis, 4 (10.0%) with serositis, 11 (27.5%) with cardiac, 17 (42.5%) with renal, 11 (27.5%) with GIT, 5 (12.5%) with hematological, and 4 (10.0%) with neu-rological manifestations. In addition, there were 2 (5.0%) with arthritis, 31 (77.5%) with arthral-gia, and 2 (5.0%) with fever mean ± SD systolic BP was 115.95 ± 8.38 & mean ± SD diastolic BP was 75.60 ± 6.11. Regarding treatments in the patients' group, the median steroid dose was 15mg (5-25) with medi-an duration of 2 (1 3), 38 (95.0%) patients received hydroxychloroquine with mean ± SD hy-droxychloroquine dose of 205.26 mg ± 51.71. 23 (57.5%) patients received cyclophosphamide with mean ± SD number of cyclophosphamide doses 7.17 mg ± 2.42. Mycophenolate was re-ceived in 27 (67.5%) with mean ± SD dose of 614.07 mg ± 225.85. There were highly statistically significant differences between control group and patients' group concerning TLC, creatinine, & ESR. Highly statistically significant variance was noted among the control group and patients group concerning CRP. Regarding the patients' group, the mean ± SD serum C3 was 99.89 mg/dl ± 28.45, median (IQR) serum C4 was 14.5 mg/dl (8.8 25.5), and median (IQR) albumin creatinine ratio was 27 IU/ML (16 186). There was positive ANA with titre and pattern in 34 patients (85.0%), positive antids-DNA in 25 patients (62.5%), and positive anticardiolipin IgM and IgG in 5 patients (12.5%). Renal biopsy was found to be normal in 23 (57.5 percent), lupus nephritis class II, III in 3 (7.5 percent), lupus nephritis class III in 10 (25.0%), and lupus nephritis class IV in 4 (10.0%). Urine analysis results showed the following: normal in 28 (70.0%), albumin in 2 (5.0%), casts in 2 (5.0%), pus cell in 4 (10.0%), albumin + casts in 2 (5.0%) and albumin + pus cell in 2 (5.0%). Regarding semaphorin 3A level, a highly statistically significant variance was noted among the control & patients group concerning semaphorin 3A level found to be lower in cases than control with a p-value below 0.001. In patients' group, a negative correlation for semaphorin 3A with SBP, DBP, AST and ESR and also a positive correlation with steroid duration in the studied pa-tients. In addition, highly significant association between semaphorin 3A & positive CRP. How-ever, no significant relationship between semaphorin 3A & SLE manifestations except arthritis was found related to semaphorin 3A level. ROC curve shows that the semaphorin 3A cut-off point to predict SLE ≤ 3 with sensitivity = 47.50, specificity=92.50, PPV=86.4, and NPV=63.8. CONCLUSION: Reduced plasma Semaphorin 3A levels were found in this study; furthermore, their clinical relationship in SLE proposes their significant job in this illness. Furthermore, the ROC results demonstrated that Semaphorin 3A could be a new symptomatic biomarker in SLE with very high sensitivity for the determination of SLE, demonstrating that they might be helpful bi-omarkers for the evaluation of SLE. However, extra studies that focus on the potential role of Semaphorin 3A in SLE are needed.

3.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929171

RESUMO

Semaphorin 3A (SEMA3A), a nerve-repellent factor produced by keratinocytes, has an inhibitory effect on nerve extension to the epidermis. Epidermal innervation is involved in pruritus in inflammatory skin diseases such as atopic dermatitis (AD) and dry skin. We previously reported that tapinarof, a stilbene molecule, upregulates SEMA3A in human keratinocytes. We also showed that this mechanism is mediated via the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and the nuclear factor erythroid 2-related factor 2 (NRF2) axis. Since some stilbenes activate AHR and NRF2, we attempted to identify other stilbenes that upregulate SEMA3A. We analyzed normal human epidermal keratinocytes (NHEKs) treated with 11 types of stilbenes and examined SEMA3A expression. We found that resveratrol and pinostilbene, antioxidant polyphenols, upregulated SEMA3A and increased nuclear AHR and NRF2 expression. In addition, AHR knockdown by small interfering RNA (siRNA) transfection abolished the NRF2 nuclear expression. Furthermore, AHR and NRF2 knockdown by siRNA transfection abrogated resveratrol- and pinostilbene-induced SEMA3A upregulation. Finally, we confirmed that resveratrol and pinostilbene increased SEMA3A promoter activity through NRF2 binding using ChIP-qPCR analysis. These results suggest that resveratrol and pinostilbene upregulate SEMA3A via the AHR-NRF2 axis in human keratinocytes.

4.
In Vitro Cell Dev Biol Anim ; 60(6): 609-615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38727898

RESUMO

Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese , Semaforina-3A , Animais , Camundongos , Agrecanas/metabolismo , Agrecanas/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Condrócitos/metabolismo , Condrócitos/citologia , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Glicosaminoglicanos/metabolismo , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Semaforina-3A/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética
5.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38629364

RESUMO

BACKGROUND: Osteolytic bone metastasis is a common complication of Non-Small Cell Lung Cancer (NSCLC), resulting in bone pain, hypercalcemia, and fractures that severely reduce the quality of life and survival time of patients. Semaphorins 3A (Sema3A) is one of the isoforms of the Semaphorins family, which is important in a variety of physiological and pathological processes, such as angiogenesis, immune regulation, and tumorigenesis. However, the role of Sema3A in the development of osteolytic bone metastasis in NSCLC is unknown. METHODS: In this study, we established in vitro models simulating NSCLC cells in regulating the differentiation and maturation of osteoblast and osteoclast precursors and observed the differentiation of osteoblasts and osteoclasts. RESULTS: The results demonstrated that the expression of Sema3A inhibited the proliferation, migration, and invasion of NSCLC cells, as well as promoted the differentiation of osteoblasts and inhibited the differentiation of osteoclasts, suggesting that Sema3A can inhibit the occurrence and development of osteolytic bone metastasis of NSCLC. CONCLUSION: This study provides a new idea for the clinical treatment of osteolytic bone metastasis in NSCLC.

7.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262737

RESUMO

Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host-derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Semaforina-3A , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Neurônios , Células-Tronco Neurais/transplante , Axônios , Medula Espinal , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia
8.
J Zhejiang Univ Sci B ; 25(1): 38-50, 2024 Jan 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38163665

RESUMO

Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.


Assuntos
Vasos Linfáticos , Osteólise Essencial , Semaforina-3A , Animais , Camundongos , Células Endoteliais/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise Essencial/metabolismo , Osteólise Essencial/patologia , Semaforina-3A/metabolismo
9.
Neuroscience ; 536: 36-46, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37967738

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is an abnormal neurological condition caused by hypoxic-ischemic damage during the perinatal period. Human placenta derived mesenchymal stem cells (hPMSCs) have been shown to have protective and reparative effects in various neurological diseases; however, the research on HIE is insufficient. This study aimed to establish a rat model of HIE and transplant hPMSCs through the lateral ventricle after hypoxic-ishcemic (HI) brain damage to observe its protective effects and mechanisms, with a focus on brain apoptosis compared among groups. Differentially expressed apoptosis-related proteins were screened using a rat cytokine array and subsequent verification. Neuropilin-1 (NRP-1) and Semaphorin 3A (Sema 3A) were selected for further investigation. Western blotting was used to quantify the expression of Sema 3A and the proteins related to PI3K/Akt/mTOR signaling pathway. Exogenous Sema 3A was added to evaluate the effects of Sema 3A/NRP-1 on hPMSCs following HI injury. hPMSCs transplantation ameliorated HI-induced pathological changes, reduced apoptosis, and improved long-term neurological prognosis. Furthermore, Sema 3A/NRP-1 was a key regulator in reducing HI-induced apoptosis after hPMSCs transplantation. hPMSCs inhibited the expression of Sema 3A/NRP-1 and activated the PI3K/Akt/mTOR signaling pathway. Additionally, exogenous Sema 3A abolished the protective effects of hPMSCs against HI. In conclusion, hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis after HI by downregulating Sema 3A/NRP-1 expression and activating the PI3K/Akt/mTOR signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Semaforina-3A , Feminino , Gravidez , Ratos , Humanos , Animais , Animais Recém-Nascidos , Neuropilina-1 , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Apoptose , Células-Tronco Mesenquimais/metabolismo
10.
Biomater Res ; 27(1): 101, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840145

RESUMO

BACKGROUND: Neural stem cells (NSCs) derived from the embryonic spinal cord are excellent candidates for the cellular regeneration of lost neural cells after spinal cord injury (SCI). Semaphorin 3 A (Sema3A) is well known as being implicated in the major axon guidance of the growth cone as a repulsive function during the development of the central nervous system, yet its function in NSC transplantation therapy for SCI has not been investigated. Here, we report for the first time that embryonic spinal cord-derived NSCs significantly express Sema3A in the SCI environment, potentially facilitating inhibition of cell proliferation after transplantation. METHODS: siRNA-Sema3A was conjugated with poly-l-lysin-coated gold nanoparticles (AuNPs) through a charge interaction process. NSCs were isolated from embryonic spinal cords of rats. Then, the cells were embedded into a dual-degradable hydrogel with the siRNA- Sema3A loaded-AuNPs and transplanted after complete SCI in rats. RESULTS: The knockdown of Sema3A by delivering siRNA nanoparticles via dual-degradable hydrogels led to a significant increase in cell survival and neuronal differentiation of the transplanted NSCs after SCI. Of note, the knockdown of Sema3A increased the synaptic connectivity of transplanted NSC in the injured spinal cord. Moreover, extracellular matrix molecule and functional recovery were significantly improved in Sema3A-inhibited rats compared to those in rats with only NSCs transplanted. CONCLUSIONS: These findings demonstrate the important role of Sema3A in NSC transplantation therapy, which may be considered as a future cell transplantation therapy for SCI cases.

11.
Oral Dis ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37771213

RESUMO

Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.

12.
Am J Cancer Res ; 13(8): 3417-3432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693128

RESUMO

Perineural invasion and neurogenesis are frequently observed in pancreatic ductal adenocarcinoma (PDAC), and they are associated with a poor prognosis. Axon guidance factor semaphorin 3A (SEMA3A) is upregulated in PDAC. However, it remains unclear whether cancer-derived SEMA3A influences nerve innervation and pancreatic tumorigenesis. In silico analyses were performed using PROGgene and NetworkAnalyst to clarify the importance of SEMA3A and its receptors, plexin A1 (PLXNA1) and neuropilin 2 (NRP2), in pancreatic cancer. In vitro assays, including migration, neurite outgrowth, and 3D recruitment, were performed to study the effects of SEMA3A on neuronal behaviors. Additionally, an orthotopic animal study using C57BL/6 mice was performed to validate the in vitro findings. Expression of SEMA3A and its receptors predicted worse prognosis for PDAC. Cancer-derived SEMA3A promoted neural migration, neurite outgrowth, and neural recruitment. Furthermore, SEMA3A-induced effects depended on PLXNA1, NRP2, and MAPK activation. Trametinib, an approved MAPK kinase (MEK) inhibitor, counteracted SEMA3A-enhanced neuronal activity in vitro. Inhibition of SEMA3A by shRNA in pancreatic cancer cells resulted in decreased neural recruitment, tumor growth, and dissemination in vivo. Our results suggested that cancer-secreted SEMA3A plays an important role in promoting neo-neurogenesis and progression of PDAC.

13.
Adv Sci (Weinh) ; 10(21): e2206801, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310417

RESUMO

Microvascular endothelial cells (MiVECs) impair angiogenic potential, leading to microvascular rarefaction, which is a characteristic feature of chronic pressure overload-induced cardiac dysfunction. Semaphorin3A (Sema3A) is a secreted protein upregulated in MiVECs following angiotensin II (Ang II) activation and pressure overload stimuli. However, its role and mechanism in microvascular rarefaction remain elusive. The function and mechanism of action of Sema3A in pressure overload-induced microvascular rarefaction, is explored, through an Ang II-induced animal model of pressure overload. RNA sequencing, immunoblotting analysis, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and immunofluorescence staining results indicate that Sema3A is predominantly expressed and significantly upregulated in MiVECs under pressure overload. Immunoelectron microscopy and nano-flow cytometry analyses indicate small extracellular vesicles (sEVs), with surface-attached Sema3A, to be a novel tool for efficient release and delivery of Sema3A from the MiVECs to extracellular microenvironment. To investigate pressure overload-mediated cardiac microvascular rarefaction and cardiac fibrosis in vivo, endothelial-specific Sema3A knockdown mice are established. Mechanistically, serum response factor (transcription factor) promotes the production of Sema3A; Sema3A-positive sEVs compete with vascular endothelial growth factor A to bind to neuropilin-1. Therefore, MiVECs lose their ability to respond to angiogenesis. In conclusion, Sema3A is a key pathogenic mediator that impairs the angiogenic potential of MiVECs, which leads to cardiac microvascular rarefaction in pressure overload-induced heart disease.


Assuntos
Cardiopatias , Rarefação Microvascular , Animais , Camundongos , Células Endoteliais/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular
14.
J Bone Miner Res ; 38(8): 1175-1191, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221130

RESUMO

miR-196b-5p plays a role in various malignancies. We have recently reported its function in regulating adipogenesis. However, it remains to be clarified whether and how miR-196b-5p affects bone cells and bone homeostasis. In this study, in vitro functional experiments showed an inhibitory effect of miR-196b-5p on osteoblast differentiation. Mechanistic explorations revealed that miR-196b-5p directly targeted semaphorin 3a (Sema3a) and inhibited Wnt/ß-catenin signaling. SEMA3A attenuated the impaired osteogenesis induced by miR-196b-5p. Osteoblast-specific miR-196b transgenic mice showed significant reduction of bone mass. Trabecular osteoblasts were reduced and bone formation was suppressed, whereas osteoclasts, marrow adipocytes, and serum levels of bone resorption markers were increased in the transgenic mice. The osteoblastic progenitor cells from the transgenic mice had decreased SEMA3A levels and exhibited retarded osteogenic differentiation, whereas those marrow osteoclastic progenitors exhibited enhanced osteoclastogenic differentiation. miR-196b-5p and SEMA3A oppositely regulated the expression of receptor activator of nuclear factor-κB ligand and osteoprotegerin. The calvarial osteoblastic cells expressing the transgene promoted osteoclastogenesis, whereas the osteoblasts overexpressing Sema3a inhibited it. Finally, in vivo transfection of miR-196b-5p inhibitor to the marrow reduced ovariectomy-induced bone loss in mice. Our study has identified that miR-196b-5p plays a key role in osteoblast and osteoclast differentiation and regulates bone homeostasis. Inhibition of miR-196b-5p may be beneficial for amelioration of osteoporosis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
MicroRNAs , Osteoclastos , Animais , Feminino , Camundongos , Diferenciação Celular , Homeostase , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia
15.
Anticancer Res ; 43(6): 2539-2550, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247909

RESUMO

BACKGROUND/AIM: Class 3 semaphorins, including semaphorin 3A (SEMA3A), are known endogenous angiogenesis inhibitors associated with endothelial cell migration and proliferation, and have been identified in many cancer cells. SEMA3A suppresses tumor angiogenesis by competing with VEGF, but tumors are known to have active angiogenesis, suggesting that expression of SEMA3A and its receptors is epigenetically restrained. To overcome this condition, we aimed to use histone deacetylase (HDAC) inhibitors to enhance the SEMA3A expression in osteosarcoma (OS) cells, thereby suppressing angiogenesis and inhibiting their proliferation and metastasis. MATERIALS AND METHODS: OS cell lines and human microvascular endothelial (HMVE) cells were treated with HDAC inhibitors such as sodium valproate (VPA) and Trichostatin A (TSA). Changes in the SEMA3A expression and its related receptors at the mRNA and protein levels, as well as the inhibitory effects on tumor angiogenesis, were investigated. RESULTS: VPA and TSA increased the expression of SEMA3A and its receptor NRP1, without inducing PLXNA1 in OS cells. Similarly, SEMA3A and NRP1 expression was increased in HMVE cells, but no growth inhibition was observed. Furthermore, SEMA3A induced by VPA in OS cell culture medium inhibited vascular tube formation of HMVE cells, and overexpression of SEMA3A enhanced OS cell growth inhibition. This growth-inhibitory effect of SEMA3A induced G1/S cell cycle arrest in OS cells. CONCLUSION: HDAC inhibitors have anti-angiogenic and anti-tumor activities that may be, in part, mediated via the SEMA3A/NRP1/PLXNA1 autocrine and paracrine pathways.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Ácido Valproico/farmacologia , Semaforina-3A/genética , Inibidores de Histona Desacetilases/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neuropilina-1/genética
16.
Front Bioeng Biotechnol ; 11: 1138601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949886

RESUMO

Introduction: Sensory nerves and vessels are critical for skeletal development and regeneration, but crosstalk between neurovascular network and mineralization are not clear. The aim of this study was to explore neurovascular changes and identify bioactive regulators during in situ osteogenesis. Method: In situ osteogenesis model was performed in male rats following Achilles tenotomy. At 3, 6 and 9 weeks after surgery, mineralization, blood vessels, sensory innervation, and bioactive regulators expression were evaluated via micro-computed tomography, immunofluorescent staining, histology and reverse transcriptase-polymerase chain reaction analyses. Result: In the process of in situ osteogenesis, the mineral density increased with time, and the locations of minerals, nerves and blood vessels were highly correlated at each time point. The highest density of sensory nerve was observed in the experimental group at the 3rd week, and then gradually decreased with time, but still higher than that in the sham control group. Among many regulatory factors, semaphorin 3A (Sema3A) was highly expressed in experimental model and its expression was temporally sequential and spatially correlated sensory nerve. Conclusion: The present study showes that during in situ osteogenesis, innervation and angiogenesis are highly correlated, and Sema3A is associated with the position and expression of the sensory nerve.

17.
Inflammation ; 46(3): 876-891, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36598593

RESUMO

Macrophages actively participate in immunomodulatory processes throughout periodontal inflammation. Regulation of M1/M2 polarization affects macrophage chemokine and cytokine secretion, resulting in a distinct immunological status that influences prognosis. Semaphorin 3A (Sema3A), a neurite growth factor, exerts anti-inflammatory effects. In this study, we investigated the immunomodulation of Sema3A on macrophage-related immune responses in vivo and in vitro. Topical medications of Sema3A in mice with periodontitis alleviated inflammatory cell infiltration into gingival tissue and reduced areas with positive IL-6 and TNFα expression. We observed that the positive area with the M2 macrophage marker CD206 increased and that of the M1 macrophage marker iNOS decreased in Sema3A-treated mice. It has been postulated that Sema3A alleviates periodontitis by regulating alternative macrophage activation. To understand the mechanism underlying Sema3A modulation of macrophage polarization, an in vitro macrophage research model was established with RAW264.7 cells, and we demonstrated that Sema3A promotes LPS/IFNγ-induced M1 macrophages to polarize into M2 macrophages and activates the PI3K/AKT/mTOR signaling pathways. Inhibition of the PI3K signaling pathway activation might reduce anti-inflammatory activity and boost the expression of the inflammatory cytokines, iNOS, IL-12, TNFα, and IL-6. This study indicated that Sema3A might be a feasible drug to regulate alternative macrophage activation in the inflammatory response and thus alleviate periodontitis.


Assuntos
Periodontite , Semaforina-3A , Camundongos , Animais , Semaforina-3A/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ativação de Macrófagos , Interleucina-6/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios/farmacologia , Periodontite/tratamento farmacológico
18.
Int Ophthalmol ; 43(6): 1995-2002, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36445548

RESUMO

PURPOSE: To evaluate serum semaphorin 3A (Sema3A) and interleukin 6 (IL-6) levels in pseudoexfoliation syndrome (PXS) patients to determine whether these mediators play a role in the systemic manifestations of PXS. METHODS: This prospective case-control study included 70 patients divided into PXS (n = 30) and a control group (n = 40). Serum Sema3A and IL-6 levels were analyzed using the enzyme-linked immunosorbent assay. RESULTS: The PXS group had a statistically higher IL-6 level [3.6(0.64-100) pg/mL], compared to the control group [2.1(0.41-39.93) pg/mL] (p < 0.05). On the other hand, the Sema3A level of the PXS group was lower at [21.55(13.2-67.5) ng/mL] compared to the control group at [29.05(11.5-103.3) ng/mL] (p < 0.05). In the PXS group, there was no correlation between the participants' IL-6 values and Sema3A, age, and body mass index (BMI) (r = 0.153, 0.000, - 0.103, respectively, all, p > 0.05), and between Sema3A values and age and BMI values (r = 0.048, - 0.133, respectively, all, p > 0.05). In the control group, there was no correlation between the participants' IL-6 values and Sema3A, age, and BMI values (r = 0.138, - 0.001, - 0.145, respectively, all, p > 0.05) and between the Sema3A and age and BMI values (r = - 0.078, - 0.281, respectively, all, p > 0.05). CONCLUSIONS: Decreased levels of the anti-inflammatory mediator Sema3A and increased levels of inflammatory mediator IL-6 detected in PXS suggest that these molecules may play a role in systemic manifestations of this syndrome, such as inflammation, atherosclerosis, heart arrhythmia, and Alzheimer's disease.


Assuntos
Síndrome de Exfoliação , Semaforina-3A , Humanos , Interleucina-6 , Estudos de Casos e Controles , Inflamação
19.
Juntendo Iji Zasshi ; 69(5): 364-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38845728

RESUMO

Axonal outgrowth after stroke plays an important role in tissue repair and is critical for functional recovery. In the peri-infarct area of a rat middle cerebral artery occlusion model, we found that the axons and dendrites that had fallen off in the acute phase of stroke (7 days) were regenerated in the chronic phase of stroke (56 days). In vitro, we showed that phosphatase tensin homolog deleted on chromosome 10/Akt/Glycogen synthase kinase 3ß signaling is implicated in postischemic axonal regeneration. In a rat model of chronic cerebral hypoperfusion, oral administration of L-carnitine induced axonal and oligodendrocyte regeneration in the cerebral white matter, resulting in myelin thickening, and it improved cognitive impairment in rats with chronic cerebral ischemia. Recently, it has been shown that exosomes enhanced functional recovery after stroke. Exosome treatment has less tumorigenicity, does not occlude the microvascular system, has low immunogenicity, and does not require a host immune response compared to conventional cell therapy. Several studies demonstrated specific microRNA in exosomes, which regulated signaling pathways related to neurogenesis after stroke. Collectively, there are various mechanisms of axonal regeneration and functional recovery after stroke, and it is expected that new therapeutic agents for stroke with the aim of axonal regeneration will be developed and used in real-world clinical practice in the future.

20.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430655

RESUMO

Osteoarthritis (OA) is a complex disorder of diarthrodial joints caused by multiple risk factors and is characterized by articular cartilage destruction as well as changes in other articular tissues. Semaphorin 3A (Sema3A), known to be a chemo-repellent for sensory nerve fibers, has recently been implicated in cartilage OA pathophysiology. We demonstrated that the expression of SEMA3A and its receptor neuropilin-1 (NRP1) are synchronously upregulated in chondrocytes isolated from knee cartilage of OA patients compared to non-OA control chondrocytes. In addition, we observed that during in vitro passaging of OA chondrocytes, the Nrp-1 level increases, whereas the Sema3A level decreases. In this study, we aimed to uncover how Sema3A-Nrp-1 signaling affects metabolism and viability of OA chondrocytes via siRNA-mediated inhibition of Nrp-1 expression. We observed a decreased proliferation rate and an increase in adhesion and senescence after Nrp-1 silencing. Moreover, MMP13 gene expression was reduced by approximately 75% in NRP1 knockdown OA chondrocytes, whereas MMP13 expression was induced by Sema3A treatment in control (nt siRNA) OA chondrocytes, accompanied by an impaired AKT phosphorylation. These findings suggest a potential catabolic function of Sema3A signaling in OA chondrocytes by inducing MMP13 expression and by compromising pro-survival AKT activation. We propose that targeting the Sema3A-Nrp-1 signaling axis might be an opportunity to interfere with OA pathogenesis and progression.


Assuntos
Metaloproteinase 13 da Matriz , Neuropilina-1 , Osteoartrite , Semaforina-3A , Humanos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA