Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
Cell Biol Toxicol ; 40(1): 26, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691186

RESUMO

Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.


Assuntos
Cobre , Espermatogênese , Testículo , Tretinoína , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Tretinoína/farmacologia , Cobre/toxicidade , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Meiose/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia
2.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722405

RESUMO

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Assuntos
Nicotinamida Fosforribosiltransferase , Síndrome do Ovário Policístico , Reprodução , Feminino , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Reprodução/fisiologia , Reprodução/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Animais , Ovário/metabolismo , Útero/metabolismo , Citocinas/metabolismo , Gravidez , Adipocinas/metabolismo
3.
Arch Endocrinol Metab ; 68: e230101, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38739523

RESUMO

Objective: Both pulsatile gonadotropin-releasing hormone (GnRH) and combined gonadotropin therapy are effective to induce spermatogenesis in men with congenital hypogonadotropic hypogonadism (CHH). This study aimed to evaluate the effect of pulsatile GnRH therapy on spermatogenesis in male patients with CHH who had poor response to combined gonadotropin therapy. Materials and methods: Patients who had poor response to combined gonadotropin therapy ≥ 6 months were recruited and shifted to pulsatile GnRH therapy. The rate of successful spermatogenesis, the median time to achieve spermatogenesis, serum gonadotropins, testosterone, and testicular volume were used for data analysis. Results: A total of 28 CHH patients who had poor response to combined gonadotropin (HCG/HMG) therapy for 12.5 (6.0, 17.75) months were recruited and switched to pulsatile GnRH therapy for 10.0 (7.25, 16.0) months. Sperm was detected in 17/28 patients (60.7%). The mean time for the appearance of sperm in semen was 12.0 (7.5, 17.5) months. Compared to those who could not achieve spermatogenesis during pulsatile GnRH therapy, the successful group had a higher level of LH60min (4.32 vs. 1.10 IU/L, P = 0.043) and FSH60min (4.28 vs. 1.90 IU/L, P = 0.021). Testicular size increased during pulsatile GnRH therapy, compared to previous HCG/ HMG therapy (P < 0.05). Conclusion: For CHH patients with prior poor response to one year of HCG/ HMG therapy, switching to pulsatile GnRH therapy may induce spermatogenesis.


Assuntos
Hormônio Liberador de Gonadotropina , Hipogonadismo , Espermatogênese , Testosterona , Humanos , Masculino , Espermatogênese/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/administração & dosagem , Hipogonadismo/tratamento farmacológico , Adulto , Testosterona/administração & dosagem , Testosterona/sangue , Testosterona/uso terapêutico , Adulto Jovem , Resultado do Tratamento , Gonadotropina Coriônica/administração & dosagem , Gonadotropina Coriônica/uso terapêutico , Menotropinas/administração & dosagem , Menotropinas/uso terapêutico , Testículo/efeitos dos fármacos , Quimioterapia Combinada , Pulsoterapia , Adolescente
4.
Cir Cir ; 92(2): 165-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38782389

RESUMO

OBJECTIVE: The current study aimed to explore the potential protective effect of Passiflora Incarnata L., (PI) in treating IR injury after testicular torsion in rats. MATERIALS AND METHODS: This research investigated the impact of PI on IR damage in male Wistar albino rats. Animals were divided to three groups: group 1 (sham), group 2 (IR), and group 3 (IR+PI). RESULTS: The malondialdehyde (MDA), myeloperoxidase (MPO) and glutathione (GSH) levels did not significantly differ across the groups (p = 0.830, p = 0.153 and p=0.140, respectively). However, Group 3 demonstrated a superior total antioxidant status (TAS) value compared to Group 2 (p = 0.020). Concurrently, Group 3 presented a significantly diminished mean total oxidant status (TOS) relative to Group 2 (p = 0.009). Furthermore, Group 3 showed a markedly improved Johnsen score relative to Group 2 (p < 0.01). IR caused cell degeneration, apoptosis, and fibrosis in testicular tissues. PI treatment, however, mitigated these effects, preserved seminiferous tubule integrity and promoted regular spermatogenesis. Furthermore, it reduced expression of tumor necrosis factor-alpha (TNF-α), Bax, and Annexin V, signifying diminished inflammation and apoptosis, thereby supporting cell survival (p < 0.01, p < 0.01, p < 0.01, respectively). CONCLUSIONS: This study revealed that PI significantly reduces oxidative stress and testicular damage, potentially benefiting therapies for IR injuries.


OBJETIVO: Explorar el posible efecto protector de Passiflora incarnata L. (PI) en el tratamiento de la lesión por isquemia-reperfusión (IR) después de una torsión testicular en ratas. MÉTODO: Se estudió el impacto de Passiflora incarnata en el daño por IR en ratas Wistar albinas machos. Los animales se dividieron tres grupos: 1 (simulado), 2 (IR) y 3 (IR+PI). RESULTADOS: Los niveles de malondialdehyde (MDA), myeloperoxidase (MPO) y glutathione (GSH) no difirieron significativamente entre los grupos (p = 0.830, p = 0.153 y p = 0.140, respectivamente). Sin embargo, el grupo 3 tuvo un valor de estado antioxidante total (TAS) superior en comparación con el grupo 2 (p = 0.020). Al mismo tiempo, el grupo 3 presentó un estado oxidante total (TOS) medio significativamente disminuido en comparación con el grupo 2 (p = 0.009). El grupo 3 mostró una mejora notable en la puntuación de Johnsen en comparación con el grupo 2 (p < 0.01). La IR causó degeneración celular, apoptosis y fibrosis en los tejidos testiculares. El tratamiento con PI mitigó estos efectos, preservó la integridad de los túbulos seminíferos y promovió la espermatogénesis regular. Además, redujo la expresión de factor de necrosis tumoral alfa, Bax y anexina V, lo que significa una disminución de la inflamación y de la apoptosis, respaldando así la supervivencia celular (p < 0.01, p < 0.01 y p < 0.01, respectivamente). CONCLUSIONES: Este estudio reveló que PI reduce significativamente el estrés oxidativo y el daño testicular, beneficiando potencialmente las terapias para lesiones por IR.


Assuntos
Modelos Animais de Doenças , Passiflora , Ratos Wistar , Traumatismo por Reperfusão , Torção do Cordão Espermático , Animais , Masculino , Torção do Cordão Espermático/complicações , Torção do Cordão Espermático/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Ratos , Passiflora/química , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Fitoterapia , Malondialdeído/análise , Malondialdeído/metabolismo , Testículo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Glutationa/metabolismo , Peroxidase/metabolismo , Peroxidase/análise , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Espermatogênese/efeitos dos fármacos
5.
Arch Insect Biochem Physiol ; 116(1): e22121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783691

RESUMO

Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.


Assuntos
Sistemas CRISPR-Cas , Spodoptera , Animais , Spodoptera/genética , Masculino , Controle Biológico de Vetores/métodos , Edição de Genes/métodos , Espermatogênese/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Controle de Insetos/métodos
6.
Ecotoxicol Environ Saf ; 279: 116504, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38795418

RESUMO

Cranial radiotherapy is a major treatment for leukemia and brain tumors. Our previous study found abscopal effects of cranial irradiation could cause spermatogenesis disorder in mice. However, the exact mechanisms are not yet fully understood. In the study, adult male C57BL/6 mice were administrated with 20 Gy X-ray cranial irradiation (5 Gy per day for 4 days consecutively) and sacrificed at 1, 2 and 4 weeks. Tandem Mass Tag (TMT) quantitative proteomics of testis was combined with bioinformatics analysis to identify key molecules and signal pathways related to spermatogenesis at 4 weeks after cranial irradiation. GO analysis showed that spermatogenesis was closely related to oxidative stress and inflammation. Severe oxidative stress occurred in testis, serum and brain, while serious inflammation also occurred in testis and serum. Additionally, the sex hormones related to hypothalamic-pituitary-gonadal (HPG) axis were disrupted. PI3K/Akt pathway was activated in testis, which upstream molecule SCF/C-Kit was significantly elevated. Furthermore, the proliferation and differentiation ability of spermatogonial stem cells (SSCs) were altered. These findings suggest that cranial irradiation can cause spermatogenesis disorder through brain-blood-testicular cascade oxidative stress, inflammation and the secretory dysfunction of HPG axis, and SCF/C-kit drive this process through activating PI3K/Akt pathway.

7.
Cells Dev ; : 203925, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797332

RESUMO

Undescended testis (UDT), known as cryptorchidism (CRY), is a common congenital disorder in which one or both testicles do not descend normally into the scrotum. A unilateral UDT model was established by inducing UDT in mice through surgery. The results showed that the testis in the UDT model group was abnormal; the lumen of the seminiferous tubule was atrophic; apoptosis, necrosis and shedding were observed in many of the germ cells; the level of sex hormones was abnormal; and mature sperm was reduced. Subsequently, transcriptome sequencing was conducted on the testicular tissue of UDT model mice. Through analysis and verification of differential genes, AZIN2 was identified as playing a key role in the decline in male fertility caused by cryptorchidism. AZIN2 expression and spermine content was down-regulated in the testis of the UDT group. We then used a combination of hypoxanthine and xanthine to create a GC-1 cell damage model. In this model, AZIN2 expression and spermine content was down-regulated. When si-Azin2 transfected GC-1 cells, cell viability and proliferation were decreased. However, in the GC-1 cell damage model transfected with Azin2 over-expressed plasmid, AZIN2 expression and spermine content was up-regulated, reversing the cell damage caused by hypoxanthine and xanthine, and restoring the proliferation ability of GC-1 cells. These results indicate that in UDT, down-regulated AZIN2 expression is a factor in testicular damage. This discussion of the connection between AZIN2 and germ cells has important clinical significance as it provides an important reference for the diagnosis and treatment of cryptorchidism.

8.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724675

RESUMO

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Assuntos
Infertilidade Masculina , Células Intersticiais do Testículo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Camundongos , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/metabolismo , Diferenciação Celular/genética , Espermatogênese/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
PeerJ ; 12: e17399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799061

RESUMO

Background: Circular RNAs (circRNAs) are a large class of RNAs present in mammals. Among these, circCamsap1 is a well-acknowledged circRNA with significant implications, particularly in the development and progression of diverse tumors. However, the potential consequences of circCamsap1 depletion in vivo on male reproduction are yet to be thoroughly investigated. Methods: The presence of circCamsap1 in the mouse testes was confirmed, and gene expression analysis was performed using reverse transcription quantitative polymerase chain reaction. CircCamsap1 knockout mice were generated utilizing the CRISPR/Cas9 system. Phenotypic analysis of both the testes and epididymis was conducted using histological and immunofluorescence staining. Additionally, fertility and sperm motility were assessed. Results: Here, we successfully established a circCamsap1 knockout mouse model without affecting the expression of parental gene. Surprisingly, male mice lacking circCamsap1 (circCamsap1-/-) exhibited normal fertility, with no discernible differences in testicular and epididymal histology, spermatogenesis, sperm counts or sperm motility compared to circCamsap1+/+ mice. These findings suggest that circCamsap1 may not play an essential role in physiological spermatogenesis. Nonetheless, this result also underscores the complexity of circRNA function in male reproductive biology. Therefore, further research is necessary to elucidate the precise roles of other circRNAs in regulating male fertility.


Assuntos
Fertilidade , Camundongos Knockout , RNA Circular , Motilidade dos Espermatozoides , Espermatogênese , Testículo , Animais , Masculino , Camundongos , Epididimo/metabolismo , Fertilidade/genética , RNA Circular/genética , RNA Circular/metabolismo , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Testículo/metabolismo
10.
Cell J ; 26(3): 169-184, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628090

RESUMO

Infertility is a common clinical condition and about half of the major causes are due to male-related infertility. Pathogenesis of this abnormality is generally undefined; so establishing a proper treatment option is relatively uncertain. In recent years, several evidences demonstrated that mesenchymal stem cells (MSCs) can be a hope for innovative and efficient treatment of male infertility. This study reviews possible applications of MSCs in the restoration of spermatogenesis in male infertility of both humans and animals to suggest new avenues for future clinical practices. Articles published in "PubMed" and "Google Scholar" from January 1, 2000, to August 1, 2023, were investigated by searching items of "mesenchymal stem cells", "cell therapy", "cell transplantation", and, "regenerative medicine" keywords, in addition to the "urology", "andrology", "reproductive medicine", "male infertility", "azoospermia", and "spermatogenesis". The results obtained from the transplantation of MSCs in the treatment of male infertility seemed encouraging and they revealed the safety and efficacy of these cells to recover spermatogenesis; eventhough further stem cell research is still required before recruiting clinical application of MSCs in the treatment of human male infertility. Undertaking more well-defined, standardized, and reproducible protocols and enrolling larger sample sizes during a longer follow-up period can benefit the relevance of MSC transplantation in the restoration of spermatogenesis and treatment of male infertility. It seems that developing and utilizing stem cell transplantations, exosomes, scaffold delivery systems, and three dimensional (3D) culture methods may open a new window to getting more benefits from cell therapy in the treatment of men infertility.

11.
Int J Reprod Biomed ; 22(2): 89-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38628779

RESUMO

Background: Cyclophosphamide (CP) has some negative effects on the reproductive system. Stem cells and their metabolites are being utilized to enhance fertility after chemotherapy. Objective: This study aimed to investigate the impact of conditioned medium (CM) derived from bone marrow mesenchymal stromal stem cells (BM-MSCs) on the toxic effects of CP on testicles. Materials and Methods: BM-MSCs were isolated, a CM was collected and 25-fold concentrated. 24 male Wistar rats (8 wk, 200-250 gr) were randomly divided into following groups: control, CP, CP+ Dulbecco's Modified Eagle Medium (DMEM), CP+CM. CP was given at a single dose of 100 mg/kg. 2 wk after the CP administration, CM was injected into the testicular efferent duct. Sperm parameters, testicular histopathology, and the level of testosterone were analyzed 2 months after treatment. The expression of B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) genes were evaluated by real-time polymerase chain reaction. Results: CP had a negative effect on testis histology (p < 0.001) and sperm quality (p < 0.001). It changed the expression of genes associated with apoptosis (p < 0.001). Treatment with CM reduced the expression of Bax (p < 0.001), while significantly increasing the expression of Bcl2 (p = 0.01). It improved sperm count (p = 0.03), viability (p < 0.001), motility (p < 0.001), spermatogonial count (p < 0.001), and epithelial thickness of testicular tubules (p = 0.02). Conclusion: These findings suggest that CM produced from BM-MSCs may be valuable for therapeutic approaches in reproductive medicine and may lessen the side effects of CP.

12.
Theranostics ; 14(6): 2622-2636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646657

RESUMO

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Assuntos
Bussulfano , Ferroptose , NAD , Sirtuína 2 , Espermatogênese , Animais , Bussulfano/farmacologia , Masculino , Espermatogênese/efeitos dos fármacos , Camundongos , NAD/metabolismo , Ferroptose/efeitos dos fármacos , Sirtuína 2/metabolismo , Sirtuína 2/genética , Modelos Animais de Doenças , Testículo/metabolismo , Testículo/efeitos dos fármacos , Azoospermia/tratamento farmacológico , Azoospermia/metabolismo , Azoospermia/induzido quimicamente
13.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617328

RESUMO

In adult stem cell lineages, the cellular microenvironment plays essential roles to ensure the proper balance of self-renewal, differentiation and regulated elimination of differentiating cells. Although regulated death of progenitor cells undergoing proliferation or early differentiation is a feature of many tissues, mechanisms that initiate this pruning remain unexplored, particularly in the male germline, where up to 30% of the germline is eliminated before the meiotic divisions. We conducted a targeted screen to identify functional regulators required in somatic support cells for survival or differentiation at early steps in the male germ line stem cell lineage. Cell type-specific knockdown in cyst cells uncovered novel roles of genes in germline stem cell differentiation, including a previously unappreciated role of the Septate Junction (SJ) in preventing cell death of differentiating germline progenitors. Loss of the SJ in the somatic cyst cells resulted in elimination of transit-amplifying spermatogonia by the 8-cell stage. Germ cell death was spared in males mutant for the differentiation factor bam indicating that intact barriers surrounding transit amplifying progenitors are required to ensure germline survival once differentiation has initiated.

14.
Toxics ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668519

RESUMO

BACKGROUND: Obesity, a chronic metabolic disorder, is related to cardiovascular diseases, diabetes, cancer, and reproductive disorders. The relationship between obesity and male infertility is now well recognized, but the mechanisms involved are unclear. We aimed to observe the effect of obesity on spermatogenesis and to investigate the role of histone ubiquitination and acetylation modifications in obesity-induced spermatogenesis disorders. METHODS: Thirty male C57BL/6J mice were randomly divided into two groups. The control group was fed with a general maintenance diet (12% fat), while a high-fat diet (HFD) group was fed with 40% fat for 10 weeks; then, they were mated with normal females. The fertility of male mice was calculated, testicular and sperm morphology were observed, and the expression levels of key genes and the levels of histone acetylation and ubiquitination modification during spermatogenesis were detected. RESULTS: The number of sperm was decreased, as well as the sperm motility, while the number of sperm with malformations was increased. In the testes, the mRNA and protein expression levels of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), chromosome region maintenance-1 protein (CRM1), high-mobility group B2 (HMGB2), phosphoglycerate kinase 2 (PGK2), and testicular angiotensin-converting enzyme (tACE) were decreased. Furthermore, obesity led to a decrease in ubiquitinated H2A (ubH2A) and reduced levels of histone H3 acetylation K18 (H3AcK18) and histone H4 acetylation K5, K8, K12, and K16 (H4tetraAck), which disrupted protamine 1 (Prm1) deposition in testis tissue. CONCLUSION: These results suggest that low levels of histone ubiquitination and acetylation are linked with obesity-induced disorders during spermatogenesis, contributing to a better understanding of obesity-induced damage to male reproduction.

15.
Reprod Toxicol ; 126: 108584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561096

RESUMO

In the domain of medical advancement, nanotechnology plays a pivotal role, especially in the synthesis of biocompatible materials for therapeutic use. Superparamagnetic Iron Oxide Nanoparticles (SPIONs), known for their magnetic properties and low toxicity, stand at the forefront of this innovation. This study explored the reproductive toxicological effects of Sodium Citrate-functionalized SPIONs (Cit_SPIONs) in adult male mice, an area of research that holds significant potential yet remains largely unknown. Our findings reveal that Cit_SPIONs induce notable morphological changes in interstitial cells and the seminiferous epithelium when introduced via intratesticular injection. This observation is critical in understanding the interactions of nanomaterials within reproductive biological systems. A striking feature of this study is the rapid localization of Cit_SPIONs in Leydig cells post-injection, a factor that appears to be closely linked with the observed decrease in steroidogenic activity and testosterone levels. This data suggests a possible application in developing nanostructured therapies targeting androgen-related processes. Over 56 days, these nanoparticles exhibited remarkable biological distribution in testis parenchyma, infiltrating various cells within the tubular and intertubular compartments. While the duration of spermatogenesis remained unchanged, there were many Tunel-positive germ cells, a notable reduction in daily sperm production, and reduced progressive sperm motility in the treated group. These insights not only shed light on the intricate mechanisms of Cit_SPIONs interaction with the male reproductive system but also highlight the potential of nanotechnology in developing advanced biomedical applications.


Assuntos
Células Intersticiais do Testículo , Nanopartículas Magnéticas de Óxido de Ferro , Espermatogênese , Espermatozoides , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Camundongos , Citrato de Sódio/toxicidade
16.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612789

RESUMO

Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.


Assuntos
Drosophila melanogaster , Sêmen , Masculino , Animais , Mitocôndrias , Espermatogênese , Espermatozoides
17.
Biology (Basel) ; 13(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38666851

RESUMO

Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, great attention has been paid to the impact of chronic low-dose-rate (LDR) radiation exposure on biological systems. The reproductive system is sensitive to radiation, with implications connected to infertility. We investigated the testis ultrastructure of the wild large Japanese field mouse (Apodemus speciosus) from three areas contaminated after the FDNPP accident, with different levels of LDR radiation (0.29 µSv/h, 5.11 µSv/h, and 11.80 µSv/h). Results showed good preservation of the seminiferous tubules, comparable to the unexposed animals (controls), except for some ultrastructural modifications. Increases in the numerical density of lipid droplet clusters in spermatogenic cells were found at high levels of LDR radiation, indicating an antioxidant activity rising due to radiation recovery. In all groups, wide intercellular spaces were found between spermatogenic cells, and cytoplasmic vacuolization increased at intermediate and high levels and vacuolated mitochondria at the high-level. However, these findings were also related to the physiological dynamics of spermatogenesis. In conclusion, the testes of A. speciosus exposed to LDR radiation associated with the FDNPP accident showed a normal spermatogenesis, with some ultrastructural changes. These outcomes may add information on the reproductive potential of mammals chronically exposed to LDR radiation.

18.
Cancers (Basel) ; 16(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38539511

RESUMO

In recent years, immune checkpoint inhibitors (ICIs) have become a viable option for many cancer patients, including specific subgroups of pediatric patients. Despite their efficiency in treating different types of cancer, ICIs are responsible for a number of immune-related adverse events, including inflammatory toxicities, that can affect several organs. However, our knowledge of the impact of ICIs on the testis and male fertility is limited. It is possible that ICI treatment affects testicular function and spermatogenesis either directly or indirectly (or both). Treatment with ICIs may cause increased inflammation and immune cell infiltration within the seminiferous tubules of the testis, disturbing spermatogenesis or testosterone deficiency (primary hypogonadism). Additionally, the interference of ICIs with the hypothalamic-pituitary-gonadal axis may alter testosterone production, affecting testicular function (secondary hypogonadism) and spermatogenesis. This review provides an overview of the available evidence on the potential association between ICIs and the disruption of spermatogenesis, with special focus on ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). Moreover, it highlights the need for further investigations and encourages the discussion of associated risks and fertility-preservation considerations between clinicians and patients.

19.
J Toxicol Sci ; 49(4): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556351

RESUMO

Busulfan is an anticancer drug known to cause serious damage to seminiferous tubules in the testes and deplete germ cells in human and animal models. The testicular artery is anastomosed with deferential and cremasteric arteries and is divided into capsular arteries, which give rise to the centripetal arteries and then recurrent arteries. The arterial blood in the testicular tissue is supplied by such a consequent system of arterial vessels, in order from the peripheral to the central area. As anticancer drugs are generally distributed throughout the whole body via the bloodstream and the running and distribution of arteries differ among the testicular areas, we hypothesized that the efficacy of busulfan differs in different testicular areas, particularly between the central and peripheral areas. In this study, busulfan was intraperitoneally injected at 40 mg/kg body weight into C57BL/6J male mice. After 28 days, in busulfan-treated mice, the diameters of seminiferous tubules were significantly higher in the central than in the peripheral area of the testes. The seminiferous tubular areas also significantly decreased in the peripheral areas compared with the central areas. The number of germ cells per seminiferous tubule was significantly higher in the central than in the peripheral area. Sertoli cell nuclei were detached into the lumen in the peripheral area. The number of Leydig cells was significantly lower in the peripheral areas. These data suggest that the effects of busulfan differ between the central and peripheral areas of the testis at 4 weeks after busulfan administration.


Assuntos
Bussulfano , Testículo , Masculino , Animais , Humanos , Camundongos , Bussulfano/toxicidade , Espermatogênese , Camundongos Endogâmicos C57BL , Túbulos Seminíferos
20.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460407

RESUMO

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Assuntos
Acetatos , Clormequat , Sobrecarga de Ferro , Fenóis , Espermatogênese , Animais , Masculino , Camundongos , Ratos , Clormequat/metabolismo , Clormequat/toxicidade , Sobrecarga de Ferro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sementes , Espermatogênese/efeitos dos fármacos , Testículo , eIF-2 Quinase/efeitos dos fármacos , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA