Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Cureus ; 16(9): e68570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39364473

RESUMO

We report a case of a 53-year-old male hairdresser with refractory asthma clinically diagnosed as eosinophilic granulomatosis with polyangiitis (EGPA) who showed remarkable improvement with tezepelumab after failing mepolizumab therapy. The patient presented with a three-year history of progressive multisystem involvement, including anosmia, asthma, hearing loss, and skin rash. The patient was clinically diagnosed as EGPA based on asthma, sinusitis with nasal polyps, eosinophilia, and purpura. Despite initial improvement with oral corticosteroids and mepolizumab, he experienced recurrent exacerbations of asthma. Tezepelumab was initiated, resulting in significant symptom improvement, successful corticosteroid tapering, and marked enhancement in pulmonary function tests. This case suggests that tezepelumab may be an effective treatment option for patients with refractory asthma, particularly those with suspected occupational exposure. Further research is needed to identify factors that predict response to different biologic therapies in refractory EGPA-related asthma and to explore the potential role of occupational exposures in treatment outcomes.

2.
Heliyon ; 10(19): e37935, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39391467

RESUMO

Anemarrhena asphodeloides (AA) Bunge, a rhizomatous plant from the Liliaceae family, is traditionally utilized to manage inflammatory conditions. Nevertheless, its impact on atopic dermatitis (AD) and the associated molecular pathways have not yet been fully explored. This study explored the therapeutic effects of AA on AD both in vivo, using 2,4-dinitrofluorobenzene-induced NC/Nga mice, and in vitro, with tumor necrosis factor-α/interferon-γ-stimulated HaCaT keratinocytes. Topical application of AA ointment on the dorsal skin notably alleviated AD symptoms and skin lesions, enhanced the dermatitis score, and improved parameters such as the rate of trans-epidermal water loss, epidermal thickness, mast cell infiltration, systemic IgE levels, and cytokine expression. Furthermore, AA treatment significantly reduced serum levels of thymic stromal lymphopoietin (TSLP) and locally suppressed mRNA expression of thymus and activation-regulated chemokine (TARC) along with other relevant cytokines in affected skin. Both in vivo and in vitro applications of AA curtailed TSLP levels by inhibiting the expression of signal transducer and activator of transcription 6, a key regulator of pruritus and an initiator of mitogen-activated protein kinase signaling pathways. Additionally, AA affected the expression of tumor necrosis factor-like weak inducer of apoptosis/fibroblast growth factor-inducible 14, a pathway of interest in the study of cutaneous inflammatory diseases. Collectively, these findings propose that AA holds potential as an effective therapeutic agent for treating AD-induced skin inflammation.

3.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125655

RESUMO

Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1 , Neoplasias Pancreáticas , Esfingomielinas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1/metabolismo , Esfingomielinas/metabolismo , Citocinas/metabolismo , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos
4.
Ann Med Surg (Lond) ; 86(8): 4684-4694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118763

RESUMO

Aims: This study entails an association between bronchial asthma and common single nucleotide polymorphisms (SNPs) in thymic stromal lymphopoietin (TSLP) gene; rs2289278, rs3806933, rs2289276, and rs1837253. Methods: The databases of PubMed, Embase, Web of Science, and Google Scholar were searched for studies reporting TSLP polymorphisms and asthma from inception to January 2022. Hardy-Weinberg equilibriums (HWE) for each polymorphism of the control group were checked using the χ 2 test. The association was estimated by means of odds ratio (OR) with 95% CI in both dominant and recessive modes of inheritance, respectively. Results: Altogether, 11 studies with 3121 asthma cases and 3041 healthy controls were added. Results from six studies showed that the SNP rs2289278 had a protective role in asthma development (OR=0.65, 95% CI: 0.44-0.97, P=0.04). Pooling of four studies showed that the SNP rs3806933 had higher odds of developing asthma (OR=1.32, 95% CI:1.14-1.54, P<0.01). However, the SNP rs2289276 and rs1837253 showed no significant association. From the subgroup analysis, SNPs rs2289278 and rs1837253 were protective against the development of asthma in Asia. However, SNP rs2289276 showed a risk association in Asia and in adults. Conclusion: This meta-analysis shows that the SNP rs2289278 has a protective effect on the development of asthma; whereas rs3806933 has a risk of asthma. Additionally, this study adds genomic-based support to the recent FDA approval of tezepelumab, an anti-TSLP agent.

5.
Respir Res ; 25(1): 272, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992639

RESUMO

Conventional immunosuppressants are ineffective for the management of EGPA-related asthma. Tezepelumab is a human monoclonal antibody that inhibits thymic stromal lymphopoietin (TLSP) that has proven efficacy in several phase 3 studies for the treatment of asthma. We treated with off-label tezepelumab the first two patients with severe refractory EPGA-related asthma. These preliminary findings suggest that targeting upstream signaling of the T2 inflammatory pathway can improve symptoms, reduce BVAS and increase Asthma Control Test scores, even in patients with refractory asthma who have failed several previous lines of treatment. Nevertheless, by analogy with dupilumab-induced IL-4/13 blockade, the persistence of sputum eosinophilia (reported in both patients) raises questions as to whether TSLP inhibition could lead to a rebound of eosinophilia and potentially to eosinophil-related symptoms in patients with EGPA.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Humanos , Asma/tratamento farmacológico , Asma/diagnóstico , Anticorpos Monoclonais Humanizados/uso terapêutico , Pessoa de Meia-Idade , Feminino , Masculino , Resultado do Tratamento , Antiasmáticos/uso terapêutico , Síndrome de Churg-Strauss/tratamento farmacológico , Síndrome de Churg-Strauss/diagnóstico , Granulomatose com Poliangiite/tratamento farmacológico , Granulomatose com Poliangiite/diagnóstico
6.
Arch Dermatol Res ; 316(7): 348, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849562

RESUMO

This study investigates the mechanism through which paeoniflorin inhibits TSLP expression to regulate dendritic cell activation in corticosteroid-dependent dermatitis treatment. Utilizing databases like TCMSP, we identified paeoniflorin's components, targets, and constructed networks. Molecular docking and gene enrichment analysis helped pinpoint key targets and pathways affected by paeoniflorin. In vitro and in vivo models were used to study CD80, CD86, cytokines, T-cell activation, skin lesions, histopathological changes, TSLP, CD80, and CD86 expression. Our study revealed paeoniflorin's active constituent targeting IL-6 in corticosteroid-dependent dermatitis. In vitro experiments demonstrated reduced TSLP expression, CD80, CD86, and cytokine secretion post-paeoniflorin treatment. In vivo, paeoniflorin significantly decreased skin lesion severity, cytokine levels, TSLP, CD80, and CD86 expression. The study highlights paeoniflorin's efficacy in inhibiting TSLP expression and suppressing dendritic cell activation in corticosteroid-dependent dermatitis, suggesting its potential as a therapeutic intervention. Additionally, it offers insights into the complex molecular mechanisms underlying paeoniflorin's anti-inflammatory properties in treating corticosteroid-dependent dermatitis.


Assuntos
Citocinas , Células Dendríticas , Glucosídeos , Monoterpenos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Animais , Citocinas/metabolismo , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Humanos , Camundongos , Dermatite/tratamento farmacológico , Dermatite/imunologia , Dermatite/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Pele/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Masculino , Linfopoietina do Estroma do Timo , Ativação Linfocitária/efeitos dos fármacos
7.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892164

RESUMO

Thymic stromal lymphopoietin (TSLP), is a protein belonging to a class of epithelial cytokines commonly called alarmins, which also includes IL-25 and IL-33. Functionally, TSLP is a key player in the immune response to environmental insults, initiating a number of downstream inflammatory pathways. TSLP performs its role by binding to a high-affinity heteromeric complex composed of the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα. In recent years, the important role of proinflammatory cytokines in the etiopathogenesis of various chronic diseases such as asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), chronic obstructive pulmonary diseases (COPDs), and chronic spontaneous urticaria has been studied. Although alarmins have been found to be mainly implicated in the mechanisms of type 2 inflammation, studies on monoclonal antibodies against TSLP demonstrate partial efficacy even in patients whose inflammation is not definable as T2 and the so-called low T2. Tezepelumab is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. Several clinical trials are evaluating the safety and efficacy of Tezepelumab in various inflammatory disorders. In this review, we will highlight major recent advances in understanding the functional role of TSLP, its involvement in Th2-related diseases, and its suitability as a target for biological therapies.


Assuntos
Anticorpos Monoclonais Humanizados , Citocinas , Linfopoietina do Estroma do Timo , Humanos , Citocinas/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Animais , Receptores de Citocinas/metabolismo , Receptores de Citocinas/antagonistas & inibidores , Terapia de Alvo Molecular , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo
8.
Respir Med Case Rep ; 50: 102041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828227

RESUMO

Introduction: Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and aspirin-exacerbated respiratory disease (AERD) have more severe sinus disease than those without AERD. CRSwNP associated with type 2 inflammation and AERD can be difficult to control with standard medical therapy and sinus surgery. Case study: 74-year-old Japanese woman with chronic sinusitis since age 50 and asthma since age 60. At age 64, she began to experience asthma exacerbations and was started on short-term corticosteroid therapy with prednisolone. At age 70, she experienced urticaria, nasal congestion, and wheezing after taking an NSAID; based on an NSAID provocation test, we diagnosed the patient with AERD and CRSwNP. A diagnosis of severe eosinophilic chronic rhinosinusitis was also made based on the scoring system and algorithm used in the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis. Results: Treatment with benralizumab (30 mg), formoterol-fluticasone combination via pressurized metered inhaler (1000 µg), and leukotriene receptor antagonist improved the asthma symptoms and exacerbations so the short-term prednisolone was stopped; however, nasal congestion and olfactory dysfunction (hyposmia) persisted, and peripheral blood eosinophil count (peak, 1500 cells/µL) and fractional exhaled nitric oxide (peak, 42 ppb) became elevated. Swapping the benralizumab for monthly tezepelumab (210 mg) improved not only the asthma symptoms but also the nasal congestion, olfactory dysfunction, eosinophil count (<300 cells/µL), and fractional exhaled nitric oxide level [8ppb]. Conclusion: Changing from benralizumab to tezepelumab improved asthma symptoms, nasal obstruction, and olfactory dysfunction in elderly, female, Japanese patient with AERD and CRSwNP.

9.
Antib Ther ; 7(2): 123-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566968

RESUMO

Thymic stromal lymphopoietin (TSLP) is a member of the IL-2 cytokine family and has been widely recognized as a master regulator of type 2 inflammatory responses at barrier surfaces. Recent studies found dysregulation of the TSLP-TSLP receptor (TSLPR) pathway is associated with the pathogenesis of not only allergic diseases but also a wide variety of cancers including both solid tumors and hematological tumors. Thus, the blockade of TSLP represents an attractive therapeutic strategy for allergic diseases and cancer. In this study, we report the development of a novel humanized anti-TSLP monoclonal antibody (mAb) HZ-1127. Binding affinity, specificity, and ability of HZ-1127 in inhibiting TSLP were tested. HZ-1127 selectively binds to the TSLP cytokine with high affinity and specificity. Furthermore, HZ-1127 dramatically inhibits TSLP-dependent STAT5 activation and is more potent than Tezepelumab, which is an FDA-approved humanized mAb against TSLP for severe asthma treatment in inhibiting TSLP-induced CCL17 and CCL22 chemokines secretion in human peripheral blood mononuclear cells. Our pre-clinical study demonstrates that HZ-1127 may serve as a potential therapeutic agent for allergic diseases and cancer.

10.
Int Immunopharmacol ; 132: 112046, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593508

RESUMO

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.


Assuntos
Anti-Inflamatórios , Aspergilose , Aspergillus fumigatus , Isoflavonas , Ceratite , Animais , Aspergillus fumigatus/efeitos dos fármacos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Ceratite/imunologia , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Humanos , Camundongos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Biofilmes/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Córnea/patologia , Córnea/efeitos dos fármacos , Córnea/microbiologia
11.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612858

RESUMO

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , Citocinas
12.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469627

RESUMO

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Assuntos
Asma , Citocinas , Estresse do Retículo Endoplasmático , Células Epiteliais , Linfopoietina do Estroma do Timo , Receptor 3 Toll-Like , Resposta a Proteínas não Dobradas , Humanos , Citocinas/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Transdução de Sinais , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Brônquios/metabolismo , Brônquios/patologia , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Células Cultivadas , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Int Immunopharmacol ; 131: 111916, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522138

RESUMO

BACKGROUND: TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE: To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS: The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS: TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION: Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.


Assuntos
Interleucina-33 , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Interleucina-33/metabolismo , Ácido Egtázico/metabolismo , Expressão Gênica , Mucosa Nasal/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição/genética
14.
Protein Expr Purif ; 218: 106441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367654

RESUMO

Nanobodies (Nbs) represent a class of single-domain antibodies with great potential application value across diverse biotechnology fields, including therapy and diagnostics. Thymic Stromal Lymphopoietin (TSLP) is an epithelial cell-derived cytokine, playing a crucial role in the regulation of type 2 immune responses at barrier surfaces such as skin and the respiratory/gastrointestinal tract. In this study, a method for the expression and purification of anti-TSLP nanobody (Nb3341) was established at 7 L scale and subsequently scaled up to 100 L scale. Key parameters, including induction temperature, methanol feed and induction pH were identified as key factors by Plackett-Burman design (PBD) and were optimized in 7 L bioreactor, yielding optimal values of 24 °C, 8.5 mL/L/h and 6.5, respectively. Furthermore, Diamond Mix-A and Diamond MMC were demonstrated to be the optimal capture and polishing resins. The expression and purification process of Nb3341 at 100L scale resulted in 22.97 g/L titer, 98.7% SEC-HPLC purity, 95.7% AEX-HPLC purity, 4 ppm of HCP content and 1 pg/mg of HCD residue. The parameters of the scaling-up process were consistent with the results of the optimized process, further demonstrating the feasibility and stability of this method. This study provides a highly promising and competitive approach for transitioning from laboratory-scale to commercial production-scale of nanobodies.


Assuntos
Anticorpos de Domínio Único , Linfopoietina do Estroma do Timo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Citocinas/metabolismo , Células Epiteliais , Diamante/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167079, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38367901

RESUMO

Type 2 inflammation in asthma develops with exposure to stimuli to include inhaled allergens from house dust mites (HDM). Features include mucus hypersecretion and the formation of pro-secretory ion transport characterised by elevated basal Cl- current. Studies using human sinonasal epithelial cells treated with HDM extract report a higher protease activated receptor-2 (PAR-2) agonist-induced calcium mobilisation that may be related to airway sensitisation by allergen-associated proteases. Herein, this study aimed to investigate the effect of HDM on Ca2+ signalling and inflammatory responses in asthmatic airway epithelial cells. Primary bronchial epithelial cells (hPBECs) from asthma donors cultured at air-liquid interface were used to assess electrophysiological, Ca2+ signalling and inflammatory responses. Differences were observed regarding Ca2+ signalling in response to PAR-2 agonist 2-Furoyl-LIGRLO-amide (2-FLI), and equivalent short-circuit current (Ieq) in response to trypsin and 2-FLI, in ALI-asthma and healthy hPBECs. HDM treatment led to increased levels of intracellular cations (Ca2+, Na+) and significantly reduced the 2-FLI-induced change of Ieq in asthma cells. Apical HDM-induced Ca2+ mobilisation was found to mainly involve the activation of PAR-2 and PAR-4-associated store-operated Ca2+ influx and TRPV1. In contrast, PAR-2, PAR-4 antagonists and TRPV1 antagonist only showed slight impact on basolateral HDM-induced Ca2+ mobilisation. HDM trypsin-like serine proteases were the main components leading to non-amiloride sensitive Ieq and also increased interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) from asthma hPBECs. These studies add further insight into the complex mechanisms associated with HDM-induced alterations in cell signalling and their relevance to pathological changes within asthma.


Assuntos
Alarminas , Asma , Humanos , Animais , Tripsina , Células Epiteliais , Alérgenos/farmacologia , Pyroglyphidae
16.
Eur J Intern Med ; 124: 89-98, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402021

RESUMO

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.


Assuntos
Asma , Citocinas , Interleucina-4 , Lipopolissacarídeos , Macrófagos Alveolares , Doença Pulmonar Obstrutiva Crônica , Linfopoietina do Estroma do Timo , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Asma/metabolismo , Asma/imunologia , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Lipopolissacarídeos/farmacologia , Interleucina-13/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas
17.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294251

RESUMO

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Assuntos
Imunidade Adaptativa , Células Epiteliais , Furões , Imunidade Inata , Vírus da Influenza A , Vírus da Influenza B , Interferons , Mucosa Nasal , Animais , Criança , Humanos , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Furões/imunologia , Furões/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/imunologia , Vacinas contra Influenza , Influenza Humana/virologia , Interferons/imunologia , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Linfopoietina do Estroma do Timo/genética , Linfopoietina do Estroma do Timo/imunologia , Células Cultivadas
18.
J Microbiol Biotechnol ; 34(4): 765-773, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247218

RESUMO

Ozone, a highly reactive oxidant molecule, is widely used as a complementary therapy for various skin diseases, including wound healing, pressure ulcers, diabetic foot, and infections. However, there is limited research on the effectiveness of ozone for atopic dermatitis (AD). Ozonated sunflower oil (OSO) is an active ingredient obtained from partially ozonated sunflower oil (SO). OSO markedly reduced the LPS-induced increase in IL-1ß and nitric oxide (NO) levels in RAW 264.7 mouse macrophage cells. Oxazolone (OXZ) was applied to hairless mice to induce AD-like skin symptoms and immune response. OSO significantly alleviated the OXZ-induced increases in the number of infiltrating mast cells, epidermal thickness, AD symptoms, thymic stromal lymphopoietin (TSLP), and filaggrin, as well as the serum levels of NO, IgE, IL-1ß, and TNF-α. Furthermore, OSO inhibited the IL-4/STAT3/MAPK pathway and the expression of NF-κB. Our results suggest that OSO treatment could relieve AD-mediated skin damage through its anti-inflammatory and antioxidant activities. Therefore, it can be used as a therapeutic agent against AD-related skin diseases.


Assuntos
Citocinas , Dermatite Atópica , Lipopolissacarídeos , Óxido Nítrico , Oxazolona , Ozônio , Óleo de Girassol , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Células RAW 264.7 , Citocinas/metabolismo , Oxazolona/toxicidade , Óxido Nítrico/metabolismo , Imunoglobulina E/sangue , NF-kappa B/metabolismo , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Interleucina-1beta/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Linfopoietina do Estroma do Timo , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Filagrinas , Interleucina-4/metabolismo , Anti-Inflamatórios/farmacologia
19.
Eur Cytokine Netw ; 34(3): 21-27, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038682

RESUMO

Thymic stromal lymphopoietin (TSLP) is highly expressed in the central nervous system in response to inflammation, but its exact function remains unclear. In this study, we used a model of LPS-stimulated microglia to investigate the direct impact of TSLP on microglial activation and the underlying mechanism. We measured oxidative stress, expression of microglial activation markers, and inflammatory indexes. The results show that TSLP treatment increased the expression of TSLP receptors and reduced LPS-induced oxidative stress, inflammation, and the expression of M1-type markers in microglia. Interestingly, TSLP treatment also influenced the differentiation of microglia towards the M2 type, suppressing LPS-induced activation, mediated by the JAK2/STAT5 pathway. Moreover, TSLP also promoted the expression of macrophage markers in the absence of LPS. These findings support the hypothesis that TSLP plays a role in reducing neuroinflammation by blocking the JAK2/STAT5 pathway induced by LPS, thus indicating a regulatory role in the central nervous system. Targeting this cytokine might provide a novel strategy for controlling an inflammatory response in the central nervous system.


Assuntos
Doenças Neuroinflamatórias , Linfopoietina do Estroma do Timo , Humanos , Microglia/metabolismo , Fator de Transcrição STAT5/metabolismo , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Inflamação , Macrófagos/metabolismo , Janus Quinase 2/metabolismo
20.
Front Immunol ; 14: 1250541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809098

RESUMO

Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.


Assuntos
Interferon Tipo I , Linfopoietina do Estroma do Timo , Humanos , Camundongos , Animais , Interferon lambda , Antivirais/farmacologia , Citocinas/metabolismo , Imunidade Adaptativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA