Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
2.
Brain Spine ; 4: 102903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185388

RESUMO

Introduction: Acute subdural hematoma (ASDH) due to traumatic brain injury (TBI) constitutes an increasing global health problem, especially in the elderly population. Treatment decisions on surgical versus conservative management pose a neurosurgical dilemma. Large practice variation exists between countries, hospitals, and individual neurosurgeons, illustrating the presence of 'clinical equipoise'. The RESET-ASDH trial aimed to address this dilemma but was terminated prematurely due to insufficient patient recruitment. Research question: What factors may have contributed to the premature discontinuation of the RESET-ASDH trial? Materials and methods: The RESET-ASDH was a multicenter randomized controlled trial (RCT) comparing functional outcome at 1 year after early surgery or an initial conservative treatment in elderly patients (≥65 years) with a traumatic ASDH. Logs of registry data, medical-ethical approval timelines and COVID-19 related research documents were analyzed. Furthermore, non-structured interviews with involved clinical research personnel were conducted. Results: The concept of clinical equipoise was broadly misinterpreted by neurosurgeons as individual uncertainty, hampering patient recruitment. Also, the elderly target population complicated the inclusion process as elderly and their informal caregivers were hesitant to participate in our acute surgical trial. Moreover, the COVID-19 pandemic added additional hurdles like delayed medical-ethical approval, a decline in eligible patients and repeated trial halts during the peaks of the pandemic. Discussion and conclusion: The premature termination of the RESET-ASDH study may have been related to the trial's methodology and target population with an additional impact of COVID-19. Future acute neurosurgical trials in elderly may consider these challenges to prevent premature trial termination.

3.
Cureus ; 16(7): e64923, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39156316

RESUMO

Decompressive craniectomy (DC) is a neurosurgical strategy that expels a parcel of the cranium to relieve pressure on a swollen or herniating brain. This review article explores the history of DC, from its ancient roots in trepanning to its contemporary applications. It then examines the mechanisms by which DC reduces intracranial pressure (ICP) and improves cerebral blood flow. The article highlights the efficacy of DC in treating patients with severe traumatic brain injury (TBI), stroke, and other conditions that cause increased ICP. However, it also acknowledges the potential complications of DC, such as infection and bleeding. The ethical considerations surrounding DC are explored in detail, particularly the challenging decision-making process for patients who are unable to give consent. A specific focus is given to the use of DC in pediatric patients, where the developing brain is especially vulnerable to pressure changes.

4.
Mil Med Res ; 11(1): 20, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556884

RESUMO

BACKGROUND: Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury (TBI). However, the heterogeneity, multifunctionality, and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood. METHODS: Using the combined single-cell transcriptomics, metabolomics, and proteomics analysis from TBI patients and the TBI mouse model, we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests. We also characterized the underlying mechanisms both in vitro and in vivo through molecular simulations, signaling detections, gene expression regulation assessments [including dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays], primary cultures or co-cultures of neutrophils and oligodendrocytes, intracellular iron, and lipid hydroperoxide concentration measurements, as well as forkhead box protein O1 (FOXO1) conditional knockout mice. RESULTS: We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model. Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI, aggravating acute brain inflammatory damage and promoting late TBI-induced depression. In the acute stage, FOXO1 upregulated cytoplasmic Versican (VCAN) to interact with the apoptosis regulator B-cell lymphoma-2 (BCL-2)-associated X protein (BAX), suppressing the mitochondrial translocation of BAX, which mediated the antiapoptotic effect companied with enhancing interleukin-6 (IL-6) production of FOXO1high neutrophils. In the chronic stage, the "FOXO1-transferrin receptor (TFRC)" mechanism contributes to FOXO1high neutrophil ferroptosis, disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein, which contributes to the progression of late depression after TBI. CONCLUSIONS: FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI, which provides insight into the heterogeneity, reprogramming activity, and versatility of neutrophils in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neutrófilos , Animais , Humanos , Camundongos , Proteína X Associada a bcl-2/metabolismo , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Depressão , Proteína Forkhead Box O1/metabolismo , Ferro
5.
Mol Neurobiol ; 61(10): 7732-7750, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38427213

RESUMO

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Compostos Fitoquímicos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/uso terapêutico
6.
Horm Mol Biol Clin Investig ; 45(1): 1-15, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507353

RESUMO

OBJECTIVES: Studies suggest that both genomic and nongenomic pathways are involved in mediating the salutary effects of steroids following traumatic brain injury (TBI). This study investigated the nongenomic effects of 17ß-estradiol (E2) mediated by the PI3K/p-Akt pathway after TBI. METHODS: Ovariectomized rats were apportioned to E2, E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicles were injected before the induction of TBI and injection of drugs. Diffuse TBI was induced by the Marmarou model. Evans blue (EBC, 5 h), brain water contents (BWC), histopathological changes, and brain PI3K and p-Akt protein expressions were measured 24 h after TBI. The veterinary comma scale (VCS) was assessed before and at different times after TBI. RESULTS: The results showed a reduction in BWC and EBC and increased VCS in the E2, E2-BSA, and G1 groups. Also, E2, E2-BSA, and G1 reduced brain edema, inflammation, and apoptosis. The ICI and G15 inhibited the beneficial effects of E2, E2-BSA, and G1 on these parameters. All drugs, following TBI, prevented the reduction of brain PI3K/p-Akt expression. The individual or combined use of ICI and G15 eliminated the beneficial effects of E2, E2-BSA, and G1 on PI3K/p-Akt expressions. CONCLUSIONS: These findings indicated that PI3K/p-Akt pathway plays a critical role in mediating the salutary effects of estradiol on histopathological changes and neurological outcomes following TBI, suggesting that GPER and classic ERs are involved in regulating the expression of PI3K/p-Akt.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Soroalbumina Bovina , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrogênios/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Receptores Acoplados a Proteínas G
7.
Biomedicines ; 12(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38255293

RESUMO

BACKGROUND: The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. METHODS: Serial [18F]GE-180 and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [18F]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. RESULTS: We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [18F]GE-180 uptake in GL261-bearing mice surpassed [18F]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [18F]GE-180 vs. 1.04 for [18F]FET, p < 0.001. Sham mice showed increased [18F]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). CONCLUSION: We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models.

8.
Endocr Connect ; 13(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078923

RESUMO

Objective: Pituitary dysfunction following mild traumatic brain injury can have serious physical and psychological consequences, making correct diagnosis and treatment essential. To the best of our knowledge, this study is the first to study the prevalence of pituitary dysfunction following mild traumatic brain injury in an all-female population following detailed endocrinological work-up after screening for pituitary dysfunction in female athletes. Design: This is a retrospective cohort study. Methods: Hormone screening blood tests, including serum blood values for thyroid-stimulating hormone, free thyroxin, insulin-like growth factor 1, prolactin, cortisol, follicle-stimulating hormone, luteinizing hormone, estrogen and progesterone, were taken in 133 female athletes. Results were repeatedly outside the reference value in 88 women necessitating further endocrinological evaluation. Two of those were lost to follow-up, and further endocrinological evaluation was performed in 86 participants. Results: Six women (4.6%, n = 131) were diagnosed with hypopituitarism, four (3.1%) with central hypothyroidism and two with growth hormone deficiency (1.5%). Ten women (7.6%) had hyperprolactinemia, and four (3.1%) of them had prolactinoma. Medical treatment was initiated in 13 (9.9%) women. Significant prognostic factors were not found. Conclusions: As 12.2% of female athletes with a history of mild traumatic brain injury had pituitary dysfunction (hypopituitarism 4.6%, hyperprolactinemia 7.6%), we conclude that pituitary dysfunction is an important consideration in post-concussion care. Hyperprolactinemia in the absence of prolactinoma may represent pituitary or hypothalamic injury following mild traumatic brain injury. Significance statement: Mild traumatic brain injury (mTBI) has become a growing public health concern as 50 million people worldwide sustain a traumatic brain injury annually, with mTBI being the most common (70-90%). As studies on mTBI have focused on mostly male populations this study aims to explore pituitary dysfunction (PD) in female athletes following mTBI. To the best of our knowledge, it is the first all-female study on PD following mTBI. The study found that 12.2% of the participating women had PD after mTBI. Six (4.6%) had hypopituitarism and ten (7.6%) had hyperprolactinemia. These findings suggest that PD following mTBI is an important consideration that endocrinologists and other medical staff working with athletes need to be aware of.

9.
Adv Exp Med Biol ; 1438: 185-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845459

RESUMO

Oxygen measurements are routinely made either in the vasculature or in the extracellular fluid surrounding the cells of tissues. Yet, metabolic oxygen availability depends on the pO2 within the cells, as does the enhancing effect of oxygen on radiotherapy outcomes. This article reports quantitative modeling work examining the effect of cellular plasma membrane composition on tissue permeability, as a window into tissue oxygen gradients. Previous application of the model indicates that lipid-mediated diffusion pathways accelerate oxygen transfer from capillaries to intracellular compartments and that the extent of acceleration is modulated by membrane lipid and protein composition. Here, the effects of broken intercellular junctions and increased gap size between cells in the model are addressed. The conclusion is reached that the pO2 gradient will likely be consistent among similar, healthy tissues but may increase with increased interstitial fluid fraction and broken intercellular junctions. Therefore, tissue structural changes in tumors and other diseased or damaged tissues may lead to aberrations in permeability that confound interpretation of extracellular oxygen measurements.


Assuntos
Oximetria , Oxigênio , Oxigênio/metabolismo , Gasometria , Consumo de Oxigênio , Veias , Espectroscopia de Ressonância de Spin Eletrônica
10.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628939

RESUMO

Activation of the interleukin-4 (IL-4) pathway ameliorates secondary injury mechanisms after experimental traumatic brain injury (TBI); therefore, we assessed the effect of a therapeutic IL-4 administration on secondary brain damage after experimental TBI. We subjected 100 C57/Bl6 wildtype mice to controlled cortical impact (CCI) and administered IL-4 or a placebo control subcutaneously 15 min thereafter. Contusion volume (Nissl staining), neurological function (hole board, video open field, and CatWalkXT®), and the immune response (immunofluorescent staining) were analyzed up to 28 days post injury (dpi). Contusion volumes were significantly reduced after IL-4 treatment up to 14 dpi (e.g., 6.47 ± 0.41 mm3 vs. 3.80 ± 0.85 mm3, p = 0.011 3 dpi). Macrophage invasion and microglial response were significantly attenuated in the IL-4 group in the acute phase after CCI (e.g., 1.79 ± 0.15 Iba-1+/CD86+ cells/sROI vs. 1.06 ± 0.21 Iba-1/CD86+ cells/sROI, p = 0.030 in the penumbra 3 dpi), whereas we observed an increased neuroinflammation thereafter (e.g., mean GFAP intensity of 3296.04 ± 354.21 U vs. 6408.65 ± 999.54 U, p = 0.026 in the ipsilateral hippocampus 7 dpi). In terms of functional outcome, several gait parameters were improved in the acute phase following IL-4 treatment (e.g., a difference in max intensity of -7.58 ± 2.00 U vs. -2.71 ± 2.44 U, p = 0.041 3 dpi). In conclusion, the early single-dose administration of IL-4 significantly reduces secondary brain damage in the acute phase after experimental TBI in mice, which seems to be mediated by attenuation of macrophage and microglial invasion.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Neoplasias Encefálicas , Contusões , Animais , Camundongos , Interleucina-4 , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Hipocampo
11.
Clin Neurol Neurosurg ; 229: 107709, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062235

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is strongly associated with coagulopathy that occurs in 25-35% of patients. This complication is linked to higher mortality and morbidity. Recent lines of evidance have supported administration of fibrinogen concentrate (FC) in patients with severe TBI, while its efficacy remains controversial. In this study we aim to evaluate the effectiveness of serum fibrinogen level correction from 1.5 and 2.0 g/l to more than 2.0 g/l in patients with severe TBI undergoing traumatic cranial surgery. METHOD: This randomized, single-blind, placebo-controlled clinical trial included trauma patients who had abbreviated injury scale (AIS) more than 3 in head and below 3 in other organs. FC was administered intravenously to patients with severe TBI undergoing TBI to correct the fibrinogen level above 2 g/l. Patients were randomly assigned to FC and control groups. The amount of intra-operative blood loss, packed cell (PC) transfusion, formation of new intracranial hemorrhage, and hemovac drainage were compared between the two study groups. RESULTS: Forty-seven of 65 participants received the study intervention within 40-112 min of admission. Intra-operative PC transfusion was higher in FC group (80%) compared to control group (55.5%) while the differance was not statistically significant (p > 0.05). Intra-operative blood loss was significantly higher in control group than FC group (P = 0.036). Chance of re-operation and new intracranial hematoma were not significantly different between two study groups. CONCLUSION: Early delivery of FC, decreases intraoperative bleeding. Although based on our findings it has no other effect on other parameters, further multicenter studies are recommended to investigate the role of early FC administration in management of post traumatic coagulopathy.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Humanos , Fibrinogênio/uso terapêutico , Perda Sanguínea Cirúrgica/prevenção & controle , Método Simples-Cego , Lesões Encefálicas Traumáticas/complicações , Hemorragias Intracranianas/complicações , Transtornos da Coagulação Sanguínea/complicações
12.
Artigo em Inglês | MEDLINE | ID: mdl-36982077

RESUMO

70%+ of youth and young adults experiencing homelessness (YYEH; 14-24 years old) smoke combustible tobacco. Little is known about the prevalence of acquired brain injury (ABI) among youth and young adult smokers experiencing homelessness (YYSEH) and its impact on tobacco use progression-the aim of our study. Through an interviewer-administered survey, YYSEH were asked about timing of tobacco use; exposure to causes of ABI; including brain oxygen deprivation (BOD; strangulation; accidental; choking games) and blunt force head trauma (BFHT; intentional; shaken violently; accidental); and perpetrators of intentional assault. Participants (n = 96) were on average 22 years old and from populations who experience structural disparities; including those minoritized by race (84.4%) and gender/sexual orientation (26.0%). In total, 87% of participants reported at least one exposure to BFHT and 65% to BOD. Intentional injury was more common than accidental. Furthermore, 60.4% of participants (n = 59) were classified as having ABI using the Brain Injury Severity Assessment. A significant proportion of YYSEH living with ABI were exposed to both BFHT and BOD prior to trying (68.5%, p = 0.002) and to first regular use (82.8%, p < 0.001) of tobacco. Among YYSEH with ABI; injury exposure occurred a median of 1 and 5 years before age of first regular tobacco use, dependent on injury mechanism. ABI from intentional violence is prevalent and precedes tobacco use among YYSEH.


Assuntos
Lesões Encefálicas , Vítimas de Crime , Pessoas Mal Alojadas , Humanos , Masculino , Adulto Jovem , Feminino , Adolescente , Adulto , Uso de Tabaco/epidemiologia , Violência
13.
Cell Mol Neurobiol ; 43(1): 423-429, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761332

RESUMO

Sex is a key biological variable in traumatic brain injury (TBI) and plays a significant role in neuroinflammatory responses. However, the molecular mechanisms contributing to this sexually dimorphic neuroinflammatory response remain elusive. Here we describe a significant and previously unreported tissue enrichment and sex-specific alteration of a set of inflammatory microRNAs (miRNAs) in CD11b+ cells of brain and bone marrow isolated from naïve mice as well as mice subjected to TBI. Our data from naïve mice demonstrated that expression levels of miR-146a-5p and miR-150-5p were relatively higher in brain CD11b+ cells, and that miR-155-5p and miR-223-3p were highly enriched in bone marrow CD11b+ cells. Furthermore, while miR-150-5p and miR-155-5p levels were higher in male brain CD11b+ cells, no significant sexual difference was observed for miR-146a-5p and miR-223-3p. However, TBI resulted in sex-specific differential responses of these miRNAs in brain CD11b+ cells. Specifically, miR-223-3p levels in brain CD11b+ cells were markedly elevated in both sexes in response to TBI at 3 and 24 h, with levels in females being significantly higher than males at 24 h. We then focused on analyzing several miR-223-3p targets and inflammation-related marker genes following injury. Corresponding to the greater elevation of miR-223-3p in females, the miR-223-3p targets, TRAF6 and FBXW7 were significantly reduced in females compared to males. Interestingly, anti-inflammatory genes ARG1 and IL4 were higher in females after TBI than in males. These observations suggest miR-223-3p and other inflammatory responsive miRNAs may play a key role in sex-specific neuroinflammatory response following TBI.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , Animais , Feminino , Masculino , Camundongos , Medula Óssea/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
14.
J Mol Neurosci ; 72(12): 2464-2472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36508141

RESUMO

This study was designed to determine the effects and underlying mechanism of honokiol (HNK) on traumatic brain injury (TBI). A rat TBI model was constructed using the modified Feeney free-fall percussion method and treatment with HNK via intraperitoneal injection. The brain tissues of the rats in each group were assessed using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay to detect the level of neuronal apoptosis. Western blots were used to detect the expression levels of apoptosis-related proteins (Bcl-2 and Bax), and ELISAs were used to measure the levels of pro-inflammatory cytokines (IL-18 and IL-1ß) and the activity of caspase-1. In addition, the mitochondrial membrane potential, reactive oxygen species (ROS), and adenosine 5'-triphosphate (ATP) were also measured. Western blots and qRT-PCRs were used to determine the relative expression levels of the mitochondrial unfolded protein response (UPRmt)-related proteins and mRNAs. Based on the experimental results, treatment with HNK was associated with a decrease in the number of TUNEL-positive cells, downregulated Bax expression levels, elevated Bcl-2 expression levels, and inhibition of neuronal apoptosis in the brain tissue of TBI rats. HNK also suppressed neuroinflammation by decreasing IL-1ß and IL-18 levels and caspase-1 activity. Additionally, HNK lowered the mitochondrial membrane potential and ROS levels, increased ATP levels, and improved mitochondrial dysfunction in neural cells. Furthermore, in the investigation of the mechanism of HNK on TBI, we observed that HNK could activate UPRmt by upregulating the mRNA and protein expression levels of HSPA9, CLPP, and HSP60 in the brain tissues of TBI rats. Collectively, HNK reduced mitochondrial dysfunction, inhibited the apoptosis of nerve cells, and attenuated inflammation in the brains of TBI rats. The protective effect of HNK may be achieved through the activation of UPRmt.


Assuntos
Lesões Encefálicas Traumáticas , Interleucina-18 , Ratos , Animais , Interleucina-18/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neurônios/metabolismo , Resposta a Proteínas não Dobradas , Mitocôndrias/metabolismo , Caspases/metabolismo , Caspases/farmacologia
15.
Front Mol Neurosci ; 15: 949573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034497

RESUMO

Excessive iron released by hemoglobin and necrotic tissues is the predominant factor that aggravates the outcome of traumatic brain injury (TBI). Regulating the levels of iron and its metabolism is a feasible way to alleviate damage due to TBI. However, the spatial-temporal iron metabolism and iron deposition in neurons and glial cells after TBI remains unclear. In our study, male C57BL/6 mice (8-12 weeks old, weighing 20-26 g) were conducted using controlled cortical impact (CCI) models, combined with treatment of iron chelator deferoxamine (DFO), followed by systematical evaluation on iron deposition, cell-specific expression of iron metabolic proteins and ferroptosis in ipsilateral cortex. Herein, ferroptosis manifest by iron overload and lipid peroxidation was noticed in ipsilateral cortex. Furthermore, iron deposition and cell-specific expression of iron metabolic proteins were observed in the ipsilateral cortical neurons at 1-3 days post-injury. However, iron overload was absent in astrocytes, even though they had intense TBI-induced oxidative stress. In addition, iron accumulation in oligodendrocytes was only observed at 7-14 days post-injury, which was in accordance with the corresponding interval of cellular repair. Microglia play significant roles in iron engulfment and metabolism after TBI, and excessive affects the transformation of M1 and M2 subtypes and activation of microglial cells. Our study revealed that TBI led to ferroptosis in ipsilateral cortex, iron deposition and metabolism exhibited cell-type-specific spatial-temporal changes in neurons and glial cells after TBI. The different effects and dynamic changes in iron deposition and iron metabolism in neurons and glial cells are conducive to providing new insights into the iron-metabolic mechanism and strategies for improving the treatment of TBI.

16.
Biochem Biophys Res Commun ; 617(Pt 1): 1-7, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660876

RESUMO

Traumatic brain injury (TBI) is a closed or open head injury caused by external mechanical forces that induce brain damage, resulting in a wide range of postinjury dysfunctions of emotions, learning and memory, adversely affecting the quality of life of patients. In this study, we aimed to explore the possible mechanisms of NOX2 on cognitive deficits in a TBI mouse model. Behavioral tests were applied to evaluate learning and memory ability, and electrophysiological experiments were performed to measure synaptic transmission and intrinsic excitability of the CA1 pyramidal cells (PCs) and long-term potentiation (LTP) in the TBI hippocampus. We found that inhibitors of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2; NOX2) (GSK2795039 and apocynin) attenuate neurological deficits, facilitate long-term potentiation (LTP) and decrease spontaneous synaptic transmission and intrinsic excitability of CA1 pyramidal cells (PCs) in traumatic brain injury (TBI) mice. NOX2-/- mice display reduced learning and memory impairment, enhanced LTP and reduced spontaneous synaptic transmission and intrinsic excitability of PCs after TBI. Our study demonstrates that NOX2 is a potential target for learning and memory by modulating excitability and excitatory transmission in the hippocampus after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Qualidade de Vida , Animais , Cognição , Hipocampo/metabolismo , Humanos , Camundongos , NADPH Oxidase 2/metabolismo
17.
Cureus ; 14(3): e23015, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35464576

RESUMO

Heterotopic ossification (HO) is the formation of bone in surrounding soft tissue. In the literature, several causes for this phenomenon were mentioned, trauma - including surgery, burns, and traumatic brain injury. HO in a shoulder is not frequently seen after traumatic brain injury (TBI). This relationship between TBI and HO can be explained in many ways. Surgical treatment entails many complications and important anatomical structures are at risk (e.g., axillary nerve). Surgeon must weigh both, risks and benefits and counsel the patient before taking a decision of surgical excision. We present a rare case of ankylosis of the shoulder following a traumatic brain injury.

18.
Front Pharmacol ; 13: 665107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431944

RESUMO

Background: Due to pain and other stimuli, patients with traumatic brain injury (TBI) after surgery show excited Sympathetic Nervous system, increased intracranial pressure, brain tissue swelling, intracranial hemorrhage, or reduced cerebral perfusion pressure, seriously threatening the life and prognosis of patients. The effect of dezocine on postoperative analgesia after TBI remains largely undetermined. Objective: In the present study, we aimed to investigate the efficacy and safety of dezocine in postoperative sedative and analgesic therapy for a craniocerebral injury. Methods: The patients were randomly divided into two groups (n = 40) as follows: dezocine group (Group A) and control group (Group B). Electrocardiography (ECG), heart rate (HR), blood pressure, and oxygen saturation (SpO2) were routinely monitored after postoperative return to the ward. Both groups were initially injected with 5 mg·kg-1·h-1 propofol to maintain sedation, and the dose was adjusted according to the patient's condition. Vital signs of patients were recorded at T1 (the base value when arriving at the ward), T2 (before the sedative agent was used) and T3 (use of dezocine or 0.9% saline solution for 8 h), T4 (use for 1 day), T5 (use for 3 days), T6 (termination of dezocine or 0.9% saline solution for 1 day), and T7 (termination for 3 days), and mean arterial pressure (MAP) and HR values were also recorded. The total amount of propofol, total fluid inflow, blood loss, and urine output were recorded within 24 h. The number of coughs of each patient was recorded within 1 day after entry, and the incidence of adverse events, such as insufficient oxygenation (SaO2 reduced by about 5% from the base value), hypotension, bradycardia, laryngospasm, bronchospasm, and so on, was assessed. Results: Compared with the control group (group B), the hemodynamics of the dezocine group (group A) was more stable, there were significant differences in MAP and HR (p < 0.05), and the stress response was milder. The total amount of propofol, total fluid inflow, blood loss, and urine volume of the dezocine group were significantly improved compared with the control group (p < 0.05). Moreover, the incidence of adverse events, such as cough, in the dezocine group was significantly reduced compared with the control group (p < 0.05). Conclusions: Dezocine, as a drug with a strong analgesic effect and obvious sedative effect, was suitable for craniocervical surgery, and it could significantly improve the stability of airway and hemodynamics in TBI patients during anesthesia recovery.

19.
Front Cell Neurosci ; 16: 838551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360493

RESUMO

The pathophysiology of traumatic brain injury (TBI) has not yet been fully elucidated. Crystallin alpha-B (CRYAB) is a molecular chaperone that apparently tries to stabilize the rapid thickening of the intermediate filaments of glial fibrillary acidic protein (GFAP) during the process of reactive astrogliosis in response to TBI. Previous analyses of the gene expression profile in human brain contusion tissue showed us an exacerbated CRYAB overexpression. Here, we used 3, 3'-diaminobenzidine (DAB) immunohistochemistry and immunofluorescence to verify CRYAB overexpression and to describe its expression and distribution in samples of contused cortical tissue derived from emergency decompressive surgery after severe TBI. The histological expression of CRYAB was mainly seen in subcortical white matter astrocytes of injured tissue. Most of the cells that overexpressed GFAP in the analyzed tissue also overexpressed CRYAB, a finding corroborated by the co-localization of the two markers. The only difference was the presence of a few pyramidal neurons that expressed CRYAB in layer V of the cerebral cortex. The selective vulnerability of layer V of the cerebral cortex during TBI could explain the expression of CRYAB in neurons of this cortical layer. Our results indicate a parallel behavior in the cellular expression of CRYAB and GFAP during the subacute response to TBI. These results lead us to postulate CRYAB as a possible marker of reactive astrogliosis in contused cortical tissue.

20.
Injury ; 53(6): 1954-1960, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35365345

RESUMO

Traumatic brain injuries (TBI) are a critical global health challenge, with disproportionate negative impact in low- and middle-income countries (LMICs). People who suffer severe TBI in LMICs are twice as likely to die than those in high-income countries, and survivors experience substantially poorer outcomes. In the hospital, patients with severe TBI are typically seen in intensive care units (ICU) to receive advanced monitoring and lifesaving treatment. However, the quality and outcomes of ICU care in LMICs are often unclear. We analyzed secondary data from a cohort of 605 adult patients who presented to the Emergency Department (ED) of a Tanzanian hospital with a moderate or severe TBI. We examined patient characteristics and performed two binary logistic regression models to assess predictors of ICU admission and patient outcome. Patients were often young (median age = 32, SD = 15), overwhelmingly male (88.9%), and experienced long delays from time of injury to presentation in the ED (median=12 h, SD = 168). A majority of patients (87.8%) underwent surgery and 55.6% ultimately had a "good recovery" with minimal disability, while 34.0% died. Patients were more likely to be seen in the ICU if they had worse baseline symptoms and were over age 60. TBI surgery conveyed a 37% risk reduction for poor TBI outcome. However, ICU patients had a 3.91 times higher risk of poor TBI outcome as compared to those not seen in the ICU, despite controlling for baseline symptoms. The findings point to the need for targeted interventions among young men, improvements in pre-hospital transportation and care, and continued efforts to increase the quality of surgical and ICU care in this setting. It is unlikely that poorer outcome among ICU patients was indicative of poorer care in the ICU; this finding was more likely due to lack of data on several factors that inform care decisions (e.g., comorbid conditions or injuries). Nevertheless, future efforts should seek to increase the capacity of ICUs in low-resource settings to monitor and treat TBI according to international guidelines, and should improve predictive modeling to identify risk for poor outcome.


Assuntos
Lesões Encefálicas Traumáticas , Adulto , Lesões Encefálicas Traumáticas/terapia , Hospitais , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Encaminhamento e Consulta , Tanzânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA